



Titulo original en inglés: CHEMICAL ENGINEERING KINETICS

Traducido por: ING. QUIM. ANTONIO EROLES GOMEZ, Ph. D.

#### Edición autorizada por: McGRAW-HILL BOOK COMPANY

Copyright C by McGraw-Hill, Inc.

ISBN-0-07-058710-8

Reservados todos los detechos. Ni todo libro ni parte de él pueden ser reproducidos, archivados o transmitidos en forma alguna o mediante algún sistema electrónico, de fotorreproducción, memoria o cualquier otro, sin permiso por escrito del editor.

ISBN 968-26-0628-4

Derechos Reservados 🔄 en Lengua Española-1986, Primera Publicación

### COMPAÑIA EDITORIAL CONTINENTAL S. A. DE C. V. CALZ. DE TLALPAN NUM. MEXICO 22, D.F.

CAMARA

MIEMBRO DE LA RENACIONAL DE LA INDUSTRIA EDITORIAL

43

PRINTED

IMPRESO EN MEXICO

## CONTENIDO

| Prefacio de la tercera edición                                        | <b>11</b><br>13<br>17 |
|-----------------------------------------------------------------------|-----------------------|
| 1 Introducción                                                        | 21                    |
| 1-1 Interpretación de datos de velocidad calculo comercial y diseño   | 23                    |
| 1-2 Cinética química                                                  | 26                    |
| 1-3 Cinética y termodinámica                                          | 28                    |
| 1-4 Termodinámica de las reacciones químicas                          | 30                    |
| 1-5 Clasificación de los reactores                                    | 47                    |
| Bibliografía                                                          | 55                    |
| Problemas                                                             | 56                    |
|                                                                       |                       |
| 2 Cinética química                                                    | 61                    |
| 2-1 Velocidades de reacciones homogéneas                              | 62                    |
| 2-2 Fundamentos de ecuaciones de velocidad-efecto de la concentración | 64                    |
| ECUACIONES DE VELOCIDAD A PARTIR DE MECANISMOS PROPUESTOS             | 65                    |
| 2-3 Etapa determinante de la velocidad                                | 66                    |
| 2-4 Aproximación de estado estacionario                               | 67                    |
| 2-5 Efecto de la temperatura-Ecuación de Arrhenius                    | 69                    |
| 2-6 Predicción de velocidades de reacción-Teorías de la cinética      | 77                    |
| 2-7 Constantes de velocidad y de equilibrio                           | 81                    |
| 2-8 Reaccionesencadena                                                | 83                    |
| EVALUACION DE ECUACIONES DE VELOCIDAD A PARTIR                        | 00                    |
| DE DATOS DE LABORATORIO                                               | 88                    |
| 2-9 Ecuaciones concentración-tiempo para una sola                     |                       |
| reacción irreversible                                                 | 89                    |
| 2-10 Ecuaciones concentracion-tiempo para reacciones reversibles      | 98                    |
| ANALISIS DE ECUACIONES DE VELOCIDAD COMPLEJAS                         | 111                   |
| 2-11 Reacciones complejas de primer orden                             | i 12                  |
| 2-12 Precisión de las mediciones cinéticas                            | 114                   |
| Bibliografía                                                          | 12;                   |
| Problemas                                                             | 14                    |

| 3 Fundamentos de diseño y ecuaciones de conservación            | 1               |
|-----------------------------------------------------------------|-----------------|
| de la masa para reactores ideales                               | 131             |
| 3-1 Diseño de reactores                                         |                 |
| 3-2 Conservación de la masa en los reactores                    | 135             |
| 3-3 Reactor ideal de tanque con agitación                       | 139             |
| 3-4 Reactor ideal de flujo tubular (flujo tapón)                | 143             |
| 3-5 Desviaciones de los reactores ideales                       | . 149           |
| 3-6 Velocidad espacial                                          | - 15 1          |
| 3-7 Efectos de la temperatura                                   | 154             |
| 3-8 Características mecánicas                                   | 155             |
| Problemas                                                       | . 160           |
| 4 Reactores isotérmicos para reacciones homogéneas .            | 165             |
| REACTORES INTERMITENTES IDEALES ·····                           | 166             |
| 4-1 Procedimiento de diseño-reactores intermitentes             | 166             |
| 4-2 Ecuaciones de velocidad a partir de mediciones en reactores |                 |
| por lotes; método de la presión total para reacciones gaseosas  | 172             |
| REACTORES DE FLUJO TUBULAR (FLUJO TAPON)                        | 174             |
| 4-3 La interpretación de datos de reactores de flujo tubular    |                 |
| de laboratorio                                                  | 174             |
| 4-4 Procedimiento de diseño-reactores de flujo tubular          | 196             |
| FACTORES CONTINUOS IDEALES DE TANQUE CON AGITACION              | 209             |
| 4-5 Reactores de un solo tanque con agitación                   | 209             |
| 46 Series de reactores de tanque con agitación                  | 219             |
| 4-7 Comparación de reactores de tanque con agitación            |                 |
| y de flujo tubular                                              | 222             |
| 4-8 Reactores de flujo no estable (semicontinuos)               | 23 1            |
| REACTORES CON CIRCULACION                                       | 238             |
| 4-9 Reactores intermitentes con recirculación                   | 240             |
| 4-10 Reactores de flujo con recirculación                       | 244             |
| Problemas                                                       | 247             |
| Reactores no isotérmicos                                        | 261             |
|                                                                 | 265             |
| 5-1 Ecuaciones de conservación de la energía                    | ····· 200       |
| 5-2 Reactores por lotes de tanque con agitación                 | ···· 200<br>273 |
| 5-3 Reactores de flujo tubular                                  | 213             |
| 5-4 Reactores continuos de tanque con agitación                 | 200             |
| de tanque con agitación                                         | 292             |
| 5-6 Reactores semicontinuos                                     | 297             |
| 5-7 Perfiles óptimos de temperatura ·····                       | 306             |
| Problemas                                                       | . 311           |

### Contenido 7

| 6 Desviaciones con respecto al comportamiento                                                                                                                             |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ideal de los reactores                                                                                                                                                    | 317         |
| 61       Conceptos y modelos de mezclado         62       Función de distribución de tiempos de residencia                                                                | 3 17<br>319 |
| 6-3 Distribuciónes de tiempos de residencia a partir de                                                                                                                   | 201         |
|                                                                                                                                                                           | 321         |
| 6-4 Distribuciones de tiempos de residencia para reactores<br>con estados de mezclado conocidos                                                                           | 325         |
| <ul><li>6-5 Interpretación de datos de respuesta mediante el modelo de dispersión 329</li><li>6-6 Interpretación de datos de respuesta con el modelo de tanques</li></ul> |             |
| con agitación conectados en serie                                                                                                                                         | 333         |
| 6-7 Conversiones en reactores no ideales                                                                                                                                  | 336         |
| 6-8 Conversiones de acuerdo con el modelo de fitujo segregado                                                                                                             | 337<br>340  |
| 6-10 Conversiones de acuerdo con el modelo de tanques                                                                                                                     |             |
| con agitación conectados en serie                                                                                                                                         | 342         |
| 611 Conversión de acuerdo al modelo del reactor con recirculación                                                                                                         | 343         |
| Problemas                                                                                                                                                                 | 346         |
| 7 Procesos heterovéneos catálisis v adsorción                                                                                                                             | .35         |
| PROCESOS HETEROGENEOS                                                                                                                                                     | 35 L        |
| 71 Weideden totales de marién                                                                                                                                             | 250         |
| 7-1 valocidades totales de reacción<br>7-2 Tipos de reacciones heterogéneas                                                                                               | 352<br>357  |
| CATALISIS                                                                                                                                                                 | 359         |
| 7-3 Naturaleza de las reacciones catalíticas                                                                                                                              | 360         |
| 74 Mecanismo de las reacciones catalíticas                                                                                                                                | 362         |
| ADSORCION                                                                                                                                                                 | 364         |
| 7-5 Química de superficies y adsorción                                                                                                                                    | 364         |
| 7-6 Isotermas de adsorción                                                                                                                                                | 369         |
| 7-7 Velocidades de adsorción                                                                                                                                              | 375         |
| Problemas                                                                                                                                                                 | 378         |
| 8 Catalizadores sólidos                                                                                                                                                   | 282         |
|                                                                                                                                                                           | 300<br>207  |
| 81 Determinacion del <b>area</b> superficial                                                                                                                              | .380<br>391 |
| 8-3 Distribución del volumen de poros                                                                                                                                     | 396         |
| 8-4 Teorías de la catálisis heterogènea                                                                                                                                   | 407         |
| 8-5 Clasificación de los catalizadores                                                                                                                                    | 408         |
| 8-6 Preparación de catalizadores                                                                                                                                          | 410         |
| 8-7 Promotores e inhibidores                                                                                                                                              | 412         |
| 8-8 Desactivación de los catalizadores (envenenamiento)                                                                                                                   | 413         |
| Problemas                                                                                                                                                                 | 416         |

| 9 Ecuaciones de velocidad para reacciones catalíticas                          |            |
|--------------------------------------------------------------------------------|------------|
| fluido-sólido                                                                  | 419        |
| 9-1 Velocidades de adsorción, desorción y reacción superficial                 | 120        |
| 9-2 Ecuaciones de velocidad en términos de concentraciones de la fase          |            |
| fluida en la superficie catalítica                                             | 424        |
| 9-3 Análisis cuantitativo de ecuaciones de velocidad                           | 428        |
| 9-4 Interpretación cuantitativa de los datos cinéticos                         | 433        |
| 9-5 Ecuaciones de velocidad redox                                              | 437<br>7/3 |
| 9-6 Cinculca de la desactivación catalitica ·····                              | 446        |
| 1100cmas                                                                       |            |
| 10 Procesos de transporte externo                                              |            |
| en reacciones heterogéneas                                                     | 453        |
| REACTORES DE LECHO FILO                                                        | 455        |
| 10-1 Efecto de los procesos físicos sobre las velocidades                      |            |
| dereacciónobservadas                                                           | 456        |
| <b>10-2</b> Coeficiente de transferencia de masa y de calor (fluido-partícula) |            |
| en lechos empacados                                                            | 458        |
| 10-3 Tratamiento cuantitativo de los efectos de transporte externo             | 463        |
| 10-4 Condiciones de operación estables                                         | 472        |
| 10.5 Efecto de los procesos de transporte externo sobre la selectividad        | 474        |
| REACTORES DE LECHO FLUIDIFICADO                                                | 479        |
| 10.6 Transferencia de masa y de calor partícula-fluido                         | 480        |
| REACTORES DE SUSPENSION                                                        | 482        |
| 10-7 Coeficientes de transferencia de masa:                                    |            |
| burbuja gaseosa a líquido (k.)                                                 | 487        |
| 10.8 Coeficiente de transferencia de masa:                                     | 107        |
| líquido a partícula (K)                                                        | 493        |
| 10.0 Efecto de la transferencia de masa sobre las valocidades observadas       | /00        |
| 10-7 Licelo de la unisierentia de masa sobre las velocidades observadas        | 477<br>508 |
| 10 10 Coeficientes de transferencia de masa: gas a líquido (k.a.)              | 506        |
| 10-11 Coeficientes de transferencia de masa: Jíquido a partícula $(k_1 a_1)$   | 507        |
| 10-12 Cálculo de la velocidad total                                            | 507        |
| Problemas                                                                      | 513        |
|                                                                                |            |
| <b>11</b> Procesos de transporte interno-reacción                              |            |
| y difusión en catalizadores porosos,                                           | 523        |
| TRANSFERENCIA INTRAGRANULAR DE MASA                                            | 524        |
| 1 l-l Difusión gaseosa en un solo poro cilíndrico                              | 525        |
| 11-2 Difusión en líquidos                                                      | 535        |
| ll-3 Difusión en catalizadores porosos                                         | 536        |
| ll-4 Difusión superficial                                                      | 545        |

### Contenido 9

|       | TRANSFERENCIA INTRAGRANULAR DE CALOR                                       | 549 |
|-------|----------------------------------------------------------------------------|-----|
| 11-5  | El concepto de conductividad térmica efectiva                              | 549 |
| ll-6  | Datos de conductividad térmica efectiva                                    | 550 |
|       | TRANSFERENCIA DE MASA DURANTE LA REACCION                                  | 553 |
| 11-7  | Factores de efectividad                                                    | 554 |
| 11-8  | Importancia de la difusión intragranular: evaluación                       |     |
|       | del factor de efectividad                                                  | 560 |
| 11-9  | Factores de efectividad experimentales y calculados                        | 569 |
| ll-10 | Efecto de la transferencia intragranular de masa                           |     |
|       | sobre la cinética observada                                                | 572 |
|       | TRANSFERENCIA DE MASA Y DE CALOR DURANTE LA REACCION                       | 578 |
| 1 H 1 | Factores de efectividad no isotérmicos                                     | 579 |
| 11-12 | Factores de efectividad no isotérmicos experimentales                      | 83  |
|       | EFECTO DEL TRANSPORTE INTERNO SOBRE LA SELECTIVIDAD<br>Y EL ENVENENAMIENTO | 586 |
| 11-13 | Selectividad para catalizadores porosos                                    | 587 |
| 11-14 | Velocidades para catalizadores porosos envenenados                         | 592 |
|       | Problemas                                                                  | 598 |
|       |                                                                            |     |

### 12 Reactores de laboratorio-interpretación

| de los datos experimentales                          | 605 |
|------------------------------------------------------|-----|
| 121 Interpretación de datos cinéticos de laboratorio | 606 |
| 12-2 Reactores de laboratorio homogéneos             | 616 |
| 12-3 Reactores de laboratorio heterogéneos           | 619 |
| 12-4 Cálculo de la velocidad total                   | 622 |
| 12-5 Estructura del diseño de reactores              | 626 |
| Problemas                                            | 631 |

| 13 Diseño de reactores catalíticos heterogéneos                 | 635   |
|-----------------------------------------------------------------|-------|
| REACTORES DE LECHO FIJO                                         | ,636  |
| 13-1 Construcción y operación                                   | 636   |
| 13-2 Bosquejo del problema de diseño                            | 640   |
| REACTORES DE LECHO FIJO ISOTERMICOS Y ADIABATICOS               | 642   |
| 13-3 Operación isotérmica                                       | 642   |
| 13-4 Operación' adiabática,                                     | . 652 |
| REACTORES DE LECHO FIJO NO ISOTERMICOS Y NO ADIABATICOS         | 657   |
| 13-5 Modelo unidimensional                                      | 658   |
| 13-6 Modelo bidimensional ,                                     | . 672 |
| 13-7 Comportamiento dinámico ,                                  | 685   |
| 13-8 Variaciones de los reactores de lecho fijo                 | 686   |
| 13-9 Importancia de los procesos de transporte en los reactores |       |
| deléchofijo                                                     | 691   |

### 10 Contenido

| REACTORES DE LECHO FLUIDIFICADO                  | 692        |
|--------------------------------------------------|------------|
| 13-10 Modelo de lecho fluidificado con dos fases | 694        |
| 13-11 Características de operación               | · 697      |
| REACTORESDESUSPENSION                            | 699        |
| 13-12 Modelos de reactores de suspensión ·····   | 700        |
| REACTORES DE LECHO PERCOLADOR                    | 708        |
| 13-13 Modelo de reactor de lecho percolador      | · 709      |
| OPTIMIZACION ·····<br>Problemas ·····            | 721<br>724 |

| 14   | Reacciones fluido-sólido no catalíticas                          | 735 |
|------|------------------------------------------------------------------|-----|
| 141  | Conceptosdediseño                                                | 736 |
|      | COMPORTAMIENTO DE UNA SOLA PARTICULA                             | 737 |
| 14-2 | Cinética y transferencia de masa ·····                           | 737 |
| 143  | Ecuaciones de velocidad total (modelo de núcleo menguante)       | 740 |
|      | MODELOS DE REACTOR                                               | 745 |
| 14-4 | Conversión-tiempo para una sola fase                             |     |
|      | (concentración del fluido constante) ·····                       | 745 |
| 145  | Conversión en reactores con una composición constante del fluido | 748 |
| 14-6 | Composición variable en la fase fluida                           | 756 |
|      | Problemas                                                        | 763 |
|      | Indice                                                           | 767 |

En la década transcurrida desde la publicación de la segunda edición, los progresos diseño de reactores han vuelto a hacer necesaria una revisión bastante logrados en el completa de todos los capítulos. Esta revisión proporcionó una oportunidad para mejorar la presentación de los conceptos básicos. Los cambios más importantes de este tipo se encuentran en los Caps. 3-5. Las ecuaciones de conservación de la masa del Cap. 3 se han desarrollado de una manera más general. Esta presentación permite que las expresiones de diseño para formas específicas de reactores, tal como aparecen en el resto del libro, se puedan obtener directamente por simplificación de las ecuaciones generales. El análisis de los reactores con recirculación, que no se incluyó en la segunda edición, se introduce en el Cap. 4. Los temas de reactores semicontinuos (Cap. 4) se han modificado de tal manera que, junto con los reactores con recirculación, proporcionen ilustraciones adicionales de las ecuaciones generales de conservación de la masa obtenidas en el Cap. 3. Para lograr una presentación más clara, los balances de masa y de energía se estudian como temas completamente separados. De esta manera, la ecuación general de conservación de la energía se desarrolla en el Cap. 5, donde se usa para el diseño de reactores no isotérmicos.

Otro de los cambios estructurales del texto consiste en la presentación de los temas de procesos heterogéneos, catálisis y propiedades de los catalizadores. La adsorción y los aspectos generales de la catálisis se incluyen ahora en el Cap. 7, que en la segunda edición era un tratamiento introductorio corto de los procesos heterogéneos. Se espera que esta modificación del Cap. 7 constituya una introducción más fundamentada a los procesos heterogéneos fluido-sólido que se estudian en el resto del texto. Después, el Cap. 8 está dedicado principalmente a las propiedades físicas y a la preparación de los catalizadores sólidos. Se incluye una nueva sección que proporciona ejemplos de catalizadores, para contar con una guía de los tipos de catalizadores conocidos por su efectividad en diferentes tipos de reacciones.

Uno de los principales objetivos de la tercera edición, así como de las anteriores, consiste en proporcionar ejemplos de diseño de reactores e interpretación de los

tos de laboratorio para reacciones químicas reales. Esto suele requerir la inclusión de cálculos numéricos repetitivos (para la resolución de ecuaciones diferenciales). En la tercera edición, estos cálculos se basan primordialmente en un método de **Runge**-Kutta. Sin embargo, cuando se hace necesario mostrar con más claridad el significado físico de los cálculos, se usa también el método Euler, que es más simple.

Aun cuando los objetivos de los Caps 10 al 13 permanecen sin modificaciones, la importancia de los reactores de tres fases ha requerido la inclusión de principios de diseño y aplicaciones para reactores de suspensión y de lecho percolador. Además, se discute también en el Cap. 13 el tema de reactores monolíticos (continuos con catalizador de fase sólida). En los Caps. 10 y 13 se estudian con mayor detalle los reactores de lecho fluidificado, incluyendo una versión más simple del modelo del burbujeo de gases.

Los temas que se presentan en cada capítulo son muy semejantes a los descritos en forma general por el prefacio de la segunda edición, a excepción de las modificaciones ya señaladas y otras adiciones. El objetivo del libro en su totalidad sigue siendo el mismo -proporcionar una presentación clara pero razonablemente explicada del diseño de reactores, con ilustraciones tomadas de sistemas químicos prácticos y realistas-. Este libro debe ser de fácil comprensión para los estudiantes del cuarto y posiblemente tercer años de los programas universitarios de ingeniería química. La totalidad de la obra puede estudiarse en dos semestres, aunque en algunos casos. podría hacerse más intensivo para un solo semestre.

Nuestro agradecimiento a numerosos estudiantes y colegas por sus valiosas discusiones y sugerencias, y especialmente a C. S. Tan, quien tanto ayudó con los cálculos numéricos.

J. M. Smith

La primera edición de la obra *Ingeniería de la Cinética Química* apareció cuando el **diseño** racional de reactores químicos era un campo incipiente en comparación con el cálculo comercial **empírico**. Desde entonces, se han logrado avances tan notables en cinética, catálisis, y especialmente en los aspectos de ingeniería de diseño, que esta segunda edición constituye una versión completamente nueva. En vista de los conocimientos actuales, **el enfoque** de la primera edición resulta inadecuado con respecto a la cinética de los sistemas de reacciones múltiples, el mezclado de los reactores no ideales, los efectos témicos y las velocidades totales de las reacciones heterogéneas. Sin embargo, el objetivo de la obra sigue siendo una presentación clara e illustrativa de los procedimientos de diseño basados en principios científicos.

Un buen **diseño** de reactores químicos requiere conocimientos de cinética química, así como de algunos procesos físicos, **tales** como el transporte de masa y energía. Por tanto, la velocidad intrínseca de las reacciones químicas se trata en forma general en el segundo capítulo, como una relación específica a la catálisis en el octavo y el noveno. Aurque en el Cap. 1 se incluye un breve repaso de la termodinámica, se recomienda estudiar los fundamentos de este tema en forma más detallada. En el Cap. 2 se exponen los principios teóricos y de introducción de la cinética, de manera que no resulta indispensable contar con conocimientos previos.

En el Cap. 3 se presentan los conceptos de diseño de reactores, desde el punto de vista del efecto de la geometría del reactor y de las condiciones de operación, sobre las ecuaciones de conservación de la masa y la energía. Se pone énfasis en las suposiciones relacionadas con los casos extremos del comportamiento de flujo tapón o tubular y los tanques con agitación. En este capítulo se incluye una breve introducción a las desviaciones de estas formas ideales, que se complementa con una presentación más detallada del los efectos del mezclado sobre la conversión, en el Cap. 6. En los Caps. 4 y 5 se examinan las formas ideales de reactores homogéneos, con énfasis en los sistemas de reacciones múltiples. Este último capítulo estudia el comportamiento no isotémico.

El Cap. 7 es una introducción a los sistemas heterogéneos. Se introduce el concepto de velocidad total de las reacciones para relacionar el diseño de los reactores heterogéneos con los conceptos previamente estudiados de diseño de reactores homogéneos. El objetivo secundario de este capítulo consiste en estudiar, en forma preliminar, el método para combinar los procesos químicos y físicos para obtener la velocidad total de reacción.

El Cap. 8 comienza con una discusión de catálisis especialmente en lo que se refiere a superficies sólidas, y esto conduce directamente a los conceptos de adsorción y a los procesos físicos de los sólidos porosos. Este último tema se discute en gran detalle debido a la importancia de las reacciones con catalizadores sólidos, así como a causa de su estrecha relación con la teoría del transporte intragranular, esto es, el transporte interno de los gránulos o tabletas compactadas (que se considera en el Cap. II). Todo esto constituye la base para la formulación de las ecuaciones de velocidad intrínseca en un centro catalítico, que se estudia en el Cap. 9.

El objetivo de los Caps. 10 y ll consiste en combinar las ecuaciones de velocidad intrínseca con las velocidades de transporte, tanto intragranular como **fluido**gánulo, para poder obtener ecuaciones de velocidad total útiles para diseño. En este punto se discuten los modelos de gránulos catalíticos porosos y los factores de efectividad. Los reactores de suspensión o de lechada ofrecen un excelente ejemplo de la **interrelación** entre los procesos químicos y físicos e ilustran la formulación de las VRlocidades totales de reacción.

Esta obra ha sido escrita bajo el punto de vista de que el diseño de un reactor químico requiere, en primer lugar, un estudio de laboratorio para establecer la velocidad intínseca de la reacción, y subsecuentemente una combinación de la expresión de la velocidad con un modelo del reactor a escala comercial para predecir su funcionamiento. En el Cap. 12 se analizan diversos tipos de reactores de laboratorio, prestándose atención especial a la forma en que se pueden reducir los datos para obtener las ecuaciones de velocidad tanto intrínseca como total. A continuación se examina el problema de los modelos. En este caso se supone que se cuenta con una ecuación de velocidad total, y el objetivo es emplearla conjuntamente con un modelo, para predecir el funcionamiento de una unidad a gran escala. Se consideran diversos reactores, aunque se le presta una atención especial al tipo de lecho fijo. Finalmente, en el último capítulo se analizan las reacciones gas-sólido no catalíticas tanto desde el punto de vista de un solo granulo sólido (velocidad total), como en términos del **diseño** del reactor. Estos sistemas sirven como ejemplos de la interacción de los procesos físicos y químicos en condiciones *transitoria*s.

No hemos intentado incluir todos los tipos de cinética o de reactores. Hemos tratado de presentar en la forma más clara y simple posible, todos los aspectos del diseño de procesos para unos cuantos tipos comunes de reactores. El material que se presenta debe resultar fácilmente comprensible para los estudiantes del cuarto **año** universitario. La totalidad del libro puede cubrirse con comodidad en dos semestres y quizás también en dos trimestres.

Las sugerencias y críticas de numerosos colegas y estudiantes han sido muy valiosas para esta revisión, por tanto, expreso mi agradecimiento para todos ellos. Las diversas y estimulantes discusiones sostenidas con el Prof. J. J. Carberry sobre la enseñanza de la íngeniería de las reacciones químicas resultaron de gran ayuda. Manifiesto mi agradecimiento a las **Sras. Barbara** Dierks y Loretta Charles, por su delicada y eficiente labor en la transcripción del manuscrito. Finalmente, este libro está dedicado a mi esposa, Essie, y a mis estudiantes, cuyo entusiasmo y esfuerzos de investigación han sido una constante inspiración.

J. M. Smith

# Factores de conversión que relacionan a las unidades inglesas más comunes con las unidades SI

| Unidad común                                            | Unidad SI<br>equivalente                   |
|---------------------------------------------------------|--------------------------------------------|
| angstrom                                                | 0.1 nm                                     |
| atmosfera (normal)                                      | 101.325 kPa                                |
| Biu                                                     | 1.055056 kJ                                |
| Biu/(Im, • °F)(capacidad calorífica)                    | 4.1868 kJ/(kg•K)                           |
| Btu/h                                                   | 0.2939711 W                                |
| Btu/pic <sup>2</sup>                                    | 11.35653 kJ/m <sup>2</sup>                 |
| Biu/(pie2+h+°F)(coefficiente de transferencia de calor) | 5.678263 J/(m <sup>2</sup> •s•K)           |
| Bru/(pic <sup>2</sup> •h)(flujo específico de calor)    | 3.154591 J/(m <sup>2</sup> •s)             |
| Btu/(pie+h+°F)(conductividad térmica)                   | 1.730735 J/(m•s•K)                         |
| caloría                                                 | 4.1868 J                                   |
| cal/(g.ºC)(capacidad calorifica)                        | 4.1868 kJ/(kg•K)                           |
| cal/molg                                                | 4.186 kJ/mol kg                            |
| cal/(mol g)(K)                                          | 4.186 kJ/(mol kg)(K)                       |
| centipoise (viscosidad absoluta)                        | 1.0 mPa+s                                  |
| centistoke (viscosidad cinemática)                      | $1.0 \times 10^{-6} \text{ m}^2/\text{s}$  |
| /(°F)                                                   | (1+ 359.67)/(1.8)K                         |
| T(°F)                                                   | <i>Т/</i> (1.8) к                          |
| dina                                                    | 10.0 "N                                    |
| pie                                                     | 0.3048 m                                   |
| nie <sup>2</sup>                                        | 9.290304 x 10 <sup>2</sup> m <sup>2</sup>  |
| pie'                                                    | 2.831685 x 10 <sup>2</sup> m <sup>3</sup>  |
| galón (5 .uide, EUA)                                    | 3.785412 x 10 <sup>3</sup> m <sup>3</sup>  |
| caballo de fuerza (550 pic-lh./s)                       | 745.6999 W                                 |
| pulgada                                                 | $2.54 \times 10^{-2} \text{ m}$            |
| plg Hg (60 °F)(nulgadas de mercurio de presión)         | 3.37685 kPa                                |
| plg H.O(60 °F)(pulgadas de agua a presión)              | 0.24884 kPa                                |
| ka (kiloeramo fueza)                                    | 9.80665 N                                  |
| milla                                                   | 1609.334 m                                 |
| mmHg (0 "C) (milimetros de mercurio a presión)          | 0.133322 kPa                               |
| novice (viscosidad absoluta)                            | 0.1 Pa+s                                   |
| b. (libras fuerza)                                      | 4.448 222 N                                |
| lb. (libras masa-avoirdupois)                           | 0.4535924 kg                               |
| lb/nla² psi (libras por pulgada cuadrada de presión)    | 6.894757 kPa                               |
| stoke (viscosidad cinemática)                           | $1.0 \times 10^{4} \text{ m}^{2}/\text{s}$ |
|                                                         |                                            |

 $1 Pa = 1 N/m^2$ 

### LISTA DE SIMBOLOS

En la siguiente lista se incluyen los símbolos comunes que se usan en el texto. Los símbolos más especializados se definen en el texto al estudiar los conceptos correspondientes.

- A factor de frecuencia en la ecuación de Arrhenius
- A área, (longitud)\*
- *a* actividad o radio de poro
- $a_m$  superficie externa por unidad de masa, (longitud)<sup>2</sup>/masa
- *a*, superficie externa por unidad de volumen, (longitud)'
- C, concentración del componente *i*, mol/vol
- C. concentración en una corriente de salida
- Co, C, concentración en una corriente de alimentación
- C<sub>b</sub> concentración global de una corriente de fluido
- *C<sub>i</sub>* concentración del componente *i* adsorbido en una superficie catalítica, mol/(masa de catalizador)
- C, concentración en la superficie del catalizador
- c<sub>p</sub> capacidad calorífica molal o calor específico a presión constante, energía/ (temperatura)(mol o por unidad de masa)
- D difusividad global y difusividad de Knudsen
- $\mathscr{D}_{AB}$  difusividad global de A o B en un sistema binario, (longitud)<sup>2</sup>/tiempo
- $\mathscr{D}_{\kappa}$  difusividad de Knudsen, (longitud)<sup>2</sup>/tiempo
- $\mathscr{D}_s$  difusividad superficial, (longitud)<sup>2</sup>/tiempo
- D, difusividad efectiva (basada en el área total de poros para el área no porosa), (longitud)<sup>2</sup>/tiempo
- D<sub>1</sub> coeficiente axial de dispersión, (longitud)<sup>2</sup>/tiempo
- d diámetro de un tubo
- *d*<sub>*p*</sub> diámetro de partícula o gránulo compactado
- *E* energía de activación, energía/mol

F velocidad de alimentación, masa o moles/tiempo  $\Delta F$ cambio de energía libre de una reacción, energía/mol f G fugacidad velocidad en masa de un fluido, masa/(área)(tiempo) entalpía, energía/masa o constante de la ley de Henry Η H'velocidad de entalpía, energia/tiempo cambio de entalpía de una reacción, energía/mol AHcoeficiente de transferencia de calor, energía/(tiempo)(área)(diferencide h temperaturas) función de distribución del tiempo de residencia  $J(\theta)$ factor j véanse las Ecs. (10-9) v (10-1 j constante de equilibrio de una reacción K constante de equilibrio de adsorción K. constante de velocidad de la reacción directa k constante de la velocidad de la reacción inversa k' k. constante de Boltzmann, 1.3805 x 10<sup>16</sup> erg/Ko 1.3805 x 10-23 J/K conductividad térmica efectiva, energía/(tiempo)(longitud)(temperatura) k. conductividad térmica, energía/(tiempo)(longitud)(temperatura) k, coeficiente de transferencia de masa (partícula a fluido), masa o mol/(tiemk. po)(área)(diferencia de concentraciones) constante de velocidad total k. L longitud peso molecular (W), masa/mol М m masa moles de componente i n velocidad de flujo mola1 (o velocidad de difusión) del componente N. i, mol/tiempo número de Avogrado, 6.023 x 1023 moléculas/mol No presión parcial Pi presión total Pt uL/D, ud, /D. número de Peclet . Pe número de Prandtl,  $C_{\mu}/K_{\mu}$ Pr velocidad deflujo volumétrico, volumen/tiempo transferencia de energía 0 como calor 0 energía velocidad de transferencia de calor, energia/tiempo O flujo de calor, energia/(área)(tiempo) q R relación de recirculación R, constante de los gases, energía/(mol)(K) número de Reynolds Re radio, coordenada radial r velocidad de reacción del componente i. moles/(volumen)(tiempo) r, velocidad promedio de reacción, moles/(volumen)(tiempo) r, velocidad promedio de reacción, moles/(masade catalizador)(tiempo) r, velocidad total de reacción, moles/(volumen del reactor)(tiempo) r, S selectividad 2 S., S. selectividad total, selectividad de punto entropía, energía/(mol)(temperatura) S

- AS cambio de entropía de una reacción, energía/(mol)(temperatura)
- área superficial de un poro (de catalizador) por unidad de masa S,
- número de Schmidt,  $\mu/\rho g$ Sc
- Т temperatura absoluta
- tiempo t
- U energía interna por mol o coeficiente total de transferencia de calor, energía/(tiempo)(área)(diferencia de temperaturas)
- velocidad superficial, longitud/tiempo u
- $V_{*}$ volumen de poros (de catalizador), volumen/masa
- volumen de reactor
- V velocidad, longitud/tiempo
- volumen específico 0 molal, vol/(masa) vol/(mol) V
- masa de catalizador W
- fracción de peso W
- centro activo de la superficie de un catalizador Х
- conversión, rendimiento o distancia X
- fracción mol del componente i y,
- distancia axial z
- coeficiente de actividad o relación de la velocidad total a la velocidad Y evaluada en condiciones de flujo global
- fracción de espacios vacíos £
- fracción de sólidos €s
- factor de efectividad η
- $\theta = \theta$ tiempo de residencia
- tiempo medio de residencia
- λ trayectoria libre media
- viscosidad, masa/(longitud)(tiempo) μ
- P densidad, masa/volumen
- densidad de un gránulo de catalizador, masa/volumen PP
- módulo tipo Thiele para un catalizador poroso Φ
- p. densidad de lecho de gránulos catalíticos, masa/volumen
- δ factor de sinuosidad (en un gránulo de catalizador)
- ξ grado de verificación de una reacción
- coeficiente estequiométrico Vi
- rendimiento cuántico φ.

Subíndices

- promedio prom
- b global
- catalizador o punto crítico с
- lecho B
- gas g
- interfase entre dos fases i
- líquido L
- particuh 0 gránulo Р
- superficie, sólido o estérico s

las letras en tipo negro denotan un vector (excepto en el caso de la velocidad, r)

1

### INTRODUCCION

El objetivo principal de este libro consiste en aprender cómo **diseñar** equipo para llevar a cabo las reacciones químicas que se desean. El **diseño** y la operación de estos equipos, esto es, de los reactores, requiere conocer las velocidades de los procesos tanto físico como químicos. Los principios que gobiernan a las transferencias de masa y energía son frecuentemente tan importantes como los que rigen a la cinética química. Esta combinación de las operaciones físicas y químicas es una de las **características** distintivas de la ingeniería química; el diseño de reactores químicos es una actividad específica de los ingenieros químicos.

El diseño de un reactor implica la contestación de las siguientes preguntas: 2Oué tipo y tamaño de equipo se necesita para lograr el grado deseado de verificación de la reacción? ¿Que condiciones de operación (temperaturas, presiones, velocidades ¿Qué dispositivos son necesarios para intercambiar la energía de fluio) se requieren? (generalmente en forma de calor) con los alrededores? Las respuestas a estas preguntas constituyen el diseño de proceso del reactor. Un análisis de costos para determinar el diseño más provechoso, introduce más problemas con respecto a materiuies de construcción, corrosión, requerimientos de agua y energía, y mantenimiento. Para lograr un máximo de utilidades es necesario determinar la instrumentación y los métodos de control (que pueden ir desde un sistema manual hasta una computadora de circuito cerrado) para una operación óptima. El diseño óptimo depende también, inde las estimaciones de las condiciones del mercado, tales como las directamente. relaciones precio-volumen de los reactantes y los productos. Aunque estos factores son muy importantes para el diseño y el funcionamiento de los reactores, no se en este libro. Nuestro concepto del término diseño estará limitado al diseño incluirán de proceso;'

¿Cómo se debe proceder para combinar las velocidades de los procesos químicos y físicos para diseñar un reactor? La característica básica consiste en establecer las ecuaciones de conservación de la masa y la energía' para el tipo de reactor seleccionado. La resolución de estas ecuaciones, que puede ser algebraica o diferencial, permite obtener el grado de verificación de la reacción y las condiciones de operación. En las ecuaciones de conservación aparecen dos clases de términos: 1) términos que expresan procesos físicos, esto es, velocidades de transferencia de energía y de masa de especies químicas específicas, y 2) términos que expresan velocidades de conversión de una especie química en otra. Esta última cantidad se refiere a procesos químicos y para cada reacción involucrada, se le llama velocidad intrínseca de dicha reacción. En la actualidad todavía no es posible predecir con precisión estas velocidades intrínsecas, por lo que es necesario determinarlas experimentalmente. Sin embargo, se cuenta con bastantes conocimientos relativos a las variables que afectan a las velocidades intrínsecas y existen ecuaciones que conelacionan datos de velocidades. A este terna se le llama cinética química. Se discute brevemente en la Sec. 1-2 y cuantitativamente y en detalle en el Cap. 2 para las reacciones homogéneas, y en los Caps. 8 y 9 para las reacciones catalíticas heterogéneas. El objetivo de estos capítulos es el de obtener las expresiones para velocidades intrínsecas, que puedan usarse en las ecuaciones de conservación.

La forma de las ecuaciones de conservación depende del tipo de reactor pero no de las reacciones químicas específicas involucradas. Además, los términos de transferencia de masa y de energía de estas ecuaciones tienen siempre la misma forma para cada tipo de reactor. Por tanto, los problemas de diseño son esencialmente iguales para cada tipo de reactor; la única diferencia entre un sistema reaccionante y otro es la ecuación de la velocidad intrínseca. Esta generalización representa una ventaja para la organización didáctica de este libro. De esta manera, en todos los capítulos dedicados al diseño de reactores, se aplican ecuaciones de conservación a diversos tipos de reactores. En el Cap. 3 se introducen las dos clasificaciones extremas basadas en la geometría, el reactor de tanque con agitación y el reactor de flujo tapón, Después, en los Caps. 4, 5 y 13, se consideran las aplicaciones para los reactores catalíticos homogéneos y heterogéneos. En la Sec. 1-5 se presenta un tratamiento cualitativo de diversos tipos de reactores. En contraste con la cinética intrínseca, existen contelaciones confiables para las velocidades de muchos procesos de transferencia de masa y energía. Por tanto, no se requieren datos experimentales para evaluar estos términos en las ecuaciones de conservación.

Aunque es necesario obtener velocidades intrínsecas de reacción a partir de datos experimentales, dichas velocidades no siempre pueden determinarse con este tipo de datos. Esto se debe a que las concentraciones y las temperaturas que pueden medirse con facilidad pueden no ser iguales a las que existen en el lugar donde se verifica la reacción. Esto puede ser más probable cuando existe más de una fase en el reactor. Considérese la oxidación del dióxido de azufie gaseoso a trióxido de azufie gaseoso con aire, sobre un catalizador de pentóxido de vanadio (sólido poroso). Para

<sup>1</sup> El principio de la conservación del momento se usa poco en el discho de reactores. Existen dos razones para ello. La primera es que los cambios de presión en un reactor suelen ser menos importantes que los de composición y temperatura. La segunda es que la geometría de muchos reactores es tan complicada que, hasta ahora, no ha sido posible usar el principio del momento para predecir distribuciones de **veloci**dad detalladas, aun cuando este tipo de información sería muy útil para el **discho**.

suministrar SO, a la superficie cataliticamente activa del sólido, se debe verificar una transferencia de masa de la comiente global de SO, a la superficie sólida. Puesto que esta transferencia de masa requiere que exista una diferencia de concentración, la SO, en la mezcla gaseosa total debe ser mayor que la concentración concentración de en la superficie del catalizador. Por tanto, la velocidad de reacción medida no será igual a la velocidad intrínseca correspondiente al valor conocido de la concentración global de **SO**<sub>4</sub>, sino que equivaldrá a la velocidad intrínseca que corresponde a una concentración desconocida en la superficie del catalizador. Este caso ilustra el acoplamiento de los procesos químicos (cinética intrínseca) y los procesos físicos (en este ejemplo, la transferencia de masa del SO.) al nivel de la va vacidad local. Para poder obtener una ecuación para la velocidad intrínseca a **parti**r de esta información, se tiene que considerar el efecto de la transferencia de masa. Usaremos el término velocidad global para describir la velocidad medida, esto es, la velocidad asociada con las concentraciones y temperaturas globales. La relación entre las velocidades de reacción global e intrínseca se considera en detalle en los Caps. 10 a 12. Una de las ventajas del concepto de la velocidad global consiste en que su uso en el diseño de reactores significa que se puede usar la misma forma de ecuaciones de conservación tanto para sistemas homogéneos como heterogéneos.

En la siguiente sección se estudia en detalle el efecto de esta interacción entre los procesos químicos y físicos para el **diseño** de reactores.

#### l-l Interpretación de datos de velocidad, cálculo comercial y diseño

El ingeniero químico depende de la información suministrada por el químico de laboratorio, la planta piloto o el reactor a gran escala, para desarrollar sus tareas de disefio. Tal como ya se dijo, de esta información necesita extraer, entre otras cosas, las velocidades de las reacciones químicas involucradas, es decir, lacinética química del sistema. Para lograr esto debe senarar los efectos de los procesos físicos de los observados. obteniendo información concernientes datos así de velocidades exclusivamente a la etapa de transformación química. Después de esto se puede reintroducir la influencia de las etapas físicas para el tipo de reactor y las condiciones de operación seleccionadas para la planta comercial. La interrelación de las etapas físicas v auímicas debe considerarse dos veces: Primero para obtener las expresiones de velocidad de reacción a partir de los datos de laboratorio y de planta piloto, y nuevamente al usar estas ecuaciones de velocidad de reacción para diseñar el reactor a escala comercial. El primer paso, esto es, la interpretación de los datos de velocidad, es tan importante como el segundo, y generalmente implica el mismo tipo de análisis. Por consiguiente, los siguientes capítulos incluyen algunos casos en los que la interpretación de los datos de laboratorio se discute paralelamente con los problemas de diseño del reactor. Además el Cap. 12 está dedicado casi exclusivamente a la interpretación de los datos de laboratorio para reacciones catalíticas. La interpretación de los datos de reactores de laboratorio suele ser menos difícil, y no siempre incluye las mismas etapas (en orden inverso) que el diseño de reactores. Puesto que hay menos limitaciones (por ejemplo, de tipo económico) existe más flexibilidad en la selección de un reactor de laboratorio. Es muy común diseñar un reactor de laboratorio para minimo la importancia de los procesos físicos (véase el Cap. 12). Esto reducir al con**duce** a resultados más precisos para las velocidades intrínsecas de las etapas químicas. Por ejemplo, un reactor de laboratorio puede operarse en condiciones casi isotérmicas, eliminando las consideraciones de transferencia de **calor**, mientras que dicho tipo de operación sería antieconómica en un sistema a **cscala** comercial.

Es importante considerar la relación entre el cálculo comercial (la proyección de los datos de laboratorio de planta piloto a un reactor comercial) y el diseño del reactor. En principio, si se conocen las velocidades de las reacciones químicas, es posible diseñar cualquier tipo de reactor, introduciendo los procesos físicos apropiados asociados con dicho tipo de equipo. El cálculo comercial es una versión abreviada del proceso de diseño. Las resistencias físicas no se separan de los datos obtenidos en el laboratorio sino que se proyectan directamente a una unidad grande que supuestamente produce la misma interrelación de procesos químicos y físicos. Si se pueden determinar las dimensiones y las condiciones de operación del reactor a gran escala, Jara asegurarse que las interrelaciones de los procesos químicos y físicos son iguales a las de la unidad de laboratorio, entonces los resultados de laboratorio pueden usarse directamente para predecir el comportamiento'del reactor a gran escala. En los procesos de cálculo comercial no se determina la velocidad de las etapas químicas, es decir, no se evalúa la cinética química del sistema. El cálculo comercial no siempre es aplicable, pero, cuando resulta adecuado, proporciona, un método rápido para obtener tamaños aproximados de reactores, y también es indicativo de los parámetros importantes de la interrelación entre los procesos físicos y químicos (véase la Sec. 12-5).

El cálculo comercial tiene más probabilidades de resultar bien cuando las operaciones de laboratorio y comercial se llevan a cabo en el mismo tipo de sistema. Supóngase que los datos de laboratorio para la pirólisis o cracking de hidrocarburos se obtienen con un tubo continuo a través del cual fluye la mezcla reaccionante. Si se propone utilizar un reactor de flujo tubular de este tipo para la planta comercial, puede ser posible proyectar 12 operación de la planta piloto en tal forma que ambos sistemas tengan los mismos gradientes de temperatura y concentración dentro del tubo. Entonces, el funcionamiento del reactor a gran escala -por ejemplo, en lo que se refiere a la conversión de los reactantes en diversos productos- puede predecirse directamente de los resultados de laboratorio. Sin embargo, si los datos de laboratorio se obtienen con un reactor por lotes, esto es, en un tanque o recipiente en el cual se cargan inicialmente los materiales reaccionantes (véase la Sec.1-6), resulta difícil proyectarlos directamente al reactor tubular comercial. En este caso sería necesario analizar los datos de laboratorio para obtener la ecuación de velocidad para las reacciones químicas, y utilizar estos resultados para diseñar el reactor comercial. En este libro enfatizaremos este proceso de dos etapas para la determinación de las velocidades de reacción en base a datos de laboratorio, utilizando estas velocidades para el diseño.

Estos comentarios no implican que los datos de una planta piloto que sea una réplica a pequeña escala de la unidad comercial que se propone no tengan ningún valor. Este tipo de información permite que una importante evaluación tanto de los datos de velocidad obtenidos en el laboratorio, como de los procesos para cir los procesos físicos en el reactor piloto y, supuestamente, enel equipo comercial.

Hasta ahora, hernos discutido la interrelación de los procesos químicos y físicos en forma general. Analicemos el problema con más detalle, considerando un sistema reaccionante simple, la conversión del hidrógeno orto a la forma para.<sup>2</sup> Debido a las limitaciones termodinámicas (véase la Sec.1-3), esta reacción debe llevarse a cabo a temperaturas bajas, con el objeto de obtener un buen rendimiento en la conversión a la forma para el hidrógeno. A temperaturas reducidas resulta necesario usar un catalizador para lograr una velocidad de reacción rápida. El tipo de reactor que se prefiere para este caso es un sistema continuo de estado estable en el cual el hidrógeno ://: fluye a través de un tubo empacado o rellenado con gránulos compactad del tos catalizador sólido. Considérese la interpretación de las mediciones de velocidad efectuadas con una versión de laboratorio de este tipo de reactor. Los datos observados consistirían en una serie de mediciones de las composiciones de hidrógeno en las corrientes de entrada y de salida del reactor. Las variables probables serían el flujo de hidrógeno a través del reactor, la fracción molar de hidrógeno para en la alimentación al reactor y la temperatura. El calor de reacción es despreciable, por lo que la totalidad del sistema del reactor puede operarse fácilmente en condiciones isotérmicas

El primer problema del diseño de un reactor para la producción de parahidrógeno consiste en obtener, a partir de las mediciones experimentales, una expresión cuantitativa de la velocidad de reacción en la superficie del catalizador. Específicamente, debemos separar de los datos observados, las resistencias difusionales entre el punto en el que se mide la composición -la salida del reactor- y el punto en el que se verifica la transformación química -la interfase gas-sólido en la superficie del catalizador-. Existen tres efectos difusionales que pueden causar una diferencia entre la conversión medida en la salida del reactor y la que se predice en base a la velocidad en la interfase del catalizador. La primera se origina en las características de mezclado del fluido a medida que fluye alrededor de las partículas del lecho fijo. Pueden presentarse desviaciones o cortocircuitos de tal manera que parte de la corriente no entra en contacto con el catalizador; además, puede existir difusión o retromezclado del fluido a medida que fluve por el lecho. Como resultado, la cantidad observada de parahidrógeno en el gas de salida puede ser inferior a la esperada. El segundo factor es la tendencia del fluido a adhenirse al gránulo de catalizador, por lo que éste queda rodeado de una capa de fluido relativamente estancada que opone resistencia a la transferencia de masa. Esto quiere decir que es necesario que se establezca un gradiente de concentración de parahidrógeno entre la superficie externa del gránulo y la totalidad del gas, antes de que el parahidrógeno se incorpore a la corriente de gas. Esto reduce la cantidad de parahidrógeno disponible para la fase gaseosa global. Un tercer factor es que la mayor parte de la superficie activa del catalizador está situada en los poros del interior del gránulo. El reactante debe penetrar a esta superficie porosa interior difundiéndose en el gránulo, y el producto dedifundirse hacia el exterior una vez formado. Este proceso es obstaculizado be poder por la resistencia interna de la partícula, lo que causa otra reducción del contenido

<sup>&</sup>lt;sup>2</sup> Este problema de diseño de reactores tiene importancia práctica debido a las mejores propiedades de almacenamiento del hidrógeno liquido cuando está en forma para. Noriaki Wakao y J. M. Smith, AIChE J., 8, 478 (1962).

de parahidrógeno en la coniente gaseosa. Por tanto, para determinar la velocidad de reacción en la superficie del catalizador (la cinética química del proceso) es necesario evaluar los cambios de concentración para cada uno de estos efectos difusionales, llegandose en última instancia a la obtención de la concentración de parahidrógeno en la superficie porosa interior del gránulo catalizador. La concentración interior se puede usar entonces para establecer la ecuación de velocidad de reacción.

El segundo problema radica en el uso de la ecuación de velocidad para **diseñar** un reactor comercial. Para ello se reintroducen las resistencias difusionales individuales, de tal manera que se pueda determinar la concentración real de **parahidróge**no en la comente de salida del reactor. Una vez que se conoce la **ecuación** para la velocidad superficial, es posible, en principio, predecir la conversión de salida para cualquier tipo de reactor, cualquier tamaño de gránulos catalíticos, cualesquiera condiciones de flujo de gas alrededor de los gránulos y cualquier condición de mezdado del fluido alrededor de las partículas en el lecho fijo.

Si se enfocara el mismo problema desde el punto de vista de un calculo comercial empínico, el procedimiento consistinía en intentar seleccionar las condiciones de operación y el **tamaño** de reactor para el funcionamiento a gran escala, de tal manera que las resistencias difusionales fueran iguales que en el equipo de laboratorio.

Por lo general, las velocidades se consideran en base normal; esto es, por unidad de volumen de mezcla reaccionante para una reacción homogénea, o bien por unidad de masa de catalizador para una reacción heterogénea fluido-sólido de tipo catalítico.

### 1-2 Cinética química

La cinética química es el estudio de la velocidad y del mecanismo por medio de los cuales una especie química se transforma en otra. La velocidad es la masa, en moles, de un producto formado o de un reactante consumido por unidad de tiempo. El *mecanismo es* la secuencia de eventos químicos individuales cuyo resultado global produce la reacción observada. **Basolo** y **Pearson<sup>3</sup>** han descrito el término "mecanismo" en la forma siguiente:

La palabra mecanismo indica todos los procesos individuales colisionales o elementales en los que intervienen moléculas (o átomos radicales o iones) que se verifican simultánea o consecutivamente, produciendo la velocidad total observada. Se entiende también que el mecanismo de una reación debe proporcionar una idea esterecoquímica detallada de cada etapa a medida que se verifica. Esto implica un conocimiento del Ilamado complejo activado o estado de transición, no sólo en términos de las moléculas constitutivas sino tambitn en téminos de la geometría, tales como las distancias y los ángulos interatómicos. En la mayor parte de los casos, el mecanismo postulado es una teoría ideada para explicar los resultados finales observados en los experimentos. Como cualquier otra teoría, la de los mecanismos está sujeta a modificaciones con el coner de los años, a medida que se obtienen nuevos datos o se establecen conceptos referentes a las interreacciones químicas.

i

J.F. Basolo y R. G. Pearson, "Mechanisms of Inorganic Reactions", John Wiley & Sons, Inc., New York, 1958.

No es necesario concer el mecarismo de una reacción para **diseñar** un reactor. Lo que sí se **necesita** es una ecuación de velocidad satisfactoria. Sin embargo, el conocimiento del mecanismo es de gran valor para proyectar los datos de velocidad más allá de los experimentos originales y para generalizar o sistematizar la cinética de las reacciones. La determinación del mecanismo de una reacción es una tarea bastante difícil y puede requerir la labor de muchos investigadores durante un buen número de **años**. Son pocos los sistemas para los cuales se concen mecanismos de muchas reacciones, que van desde los dos sistemas homogéneos en fase gaseosa hasta las reacciones complicadas de polimerización en las que intervienen etapas de iniciación, propagación y terminación.

Puesto que el **diseño** de reactores requiere una ecuación de velocidad confiable, el Cap. 2 estudia la cinética con bastante detalle. No será posible desarrollar procedimientos adecuados para *predecir* las velocidades de reacción hasta que exista una mejor comprensión de los mecanismos de reacción. Es importante que los técnicos involucrados en el **diseño** de reactores tengan conocimiento de los nuevos desarrollos de esta área, de tal manera que puedan emplear ventajosamente los nuevos principios de la cinética química a medida que se desarrollan. En el Cap. 2 se incluye una **breve** discusión de las teorías de reacciones y mecanismos.

La velocidad de una reacción química puede variar desde un valor tendiente a infinito hasta esencialmente cero. En las reacciones **iónicas, tales** como las que se verifican en las películas fotográficas o en las reacciones de combusión a altas temperaturas, la velocidad es extremadamente rápida. La velocidad de combinación de hidrógeno y oxígeno en ausencia de un catalizador a temperatura ambiente, es **in**conmensurablemente lenta. La mayor parte de las reacciones industriales se verifican a velocidades situadas entre estos extremos, y éstos son los casos para los cuales el **diseñador** necesita aplicar los datos cinéticos para determinar los **tamaños** finitos del equipo de reacción Es especialmente importante concer la forma en que la velocidad cambia con los parámetros de operación, siendo los más importantes la temperatura, la presión y la composición de la mezcla reaccionante.

Las primeras mediciones cuantitativas de la velocidad de reacciones fueron hechas a mediados del siglo xix por Wilhelmy,' Berthelot y St. **Gilles**,<sup>5</sup> y Harcourt y **Esson**.<sup>6</sup> El primer intento para desarrollar una teoría que explicara la forma en la cual las moléculas de una sustancia reaccionan fue el de **Arrhenius**<sup>7</sup> en 1889. El postuló la existencia de moléculas inertes y de moléculas activas en los reactantes y que solamente las activas poseían suficiente energía para tomar parte en la reacción. Desde estos desarrollos **inciales** ha habido gran número de estudios experimentales de las velocidades de reacción de una amplia gama de reacciones, pero no se logró ningún avance notable en la teoría hasta los trabajos de Eyring y **Polanyi**<sup>6</sup> que empezaron en 1920. Utilizando solamente información fundamental tal como la **configu**-

<sup>&</sup>lt;sup>4</sup>L. Wilhelmy, Pogg. Ann. 81, 413, 499 (1850).

M. Berthelot y L. P. St. Gilles, Ann. Chim. Phys., 63 (3), 385 (1862).

A. V. Harcourt y W. Esson, Proc. Roy. Soc. (London), 14, 470 (1865).

<sup>&</sup>lt;sup>7</sup>S. Arrhenius, Z. Physik Chem., 4, 226 (1889).

H. Eyring y M. Polanyi, Z. Physik Chem. B, 12, 279 (1931).

ración, dimensiones y fuerzas interatómicas de las moléculas reaccionantes, estos investigadores postularon la teoría del complejo activado para predecir la velocidad de reacción. Debido al inexacto conocimiento de las fuerzas interatómicas, etc., salvo para moléculas muy simples, la teoría del complejo activado no es útil para calcular velocidades de reacción con suficiente exactitud para trabajos de ingeniería. Si bien estos desarrollos teóricos han sido de gran valor para entender el cómo y el porqué de las reacciónes químicas, la evaluación cuantitativa de la velocidad de reacción sigue siendo un problema experimental.

La gran cantidad de datos experimentales sobre velocidades de reacciones químicas ha establecido formas empíricas confiables para la expresión matemática de los efectos de variables, tales como la temperatura y la composición sobre la velocidad. Estos resultados se interpretan para varios tipos de reacciones en el Cap. 2.

### 1-3 Cinética y termodinámica

A partir de los principios de la termodinámica y de ciertos datos termodinámicos, puede calcularse el limite máximo al cual puede llegar una reacción química. Por ejemplo, a 1 atm de presión y a una temperatura de 680 °C, y empezando con 1 mol de bióxido de azufre y 1/2 mol de oxígeno, el 50% del bióxido de azufre puede convertirse a trióxido. Estos cálculos termodinámicos resultan en valores máximos para la conversión de una reacción química, pues sólo son correctos para condiciones de equilibrio, esto es, condiciones para las cuales no hay tendencia posterior de cambio con respecto al tiempo. De esto se deduce que la velocidad neta de una reacción química debe ser cero en el punto de equilibrio. Por tanto, una gráfica de la velocidad de reacción [por ejemplo, en unidades de moles-g de producto/(s) (unidad de volumen de mezcla reaccionante)] en función del tiempo se aproximará siempre a cero a medida que el tiempo se aproxime a infinito. Este es el tipo de situación que muestra la curva A de la Fig. 1-1, donde la velocidad se aproxima a cero asintóticamente. Desde luego que hay algunos casos para los cuales se alcanza el equilibrio con más rápidez, por lo que la velocidad se vuelve de hecho cero a un tiempo finito, tal como lo ilustra la curva **B**.

En forma similar, la *conversión* (fracción de reactante transformada o convertida) calculada a partir de datos termodinámicos seria el punto final de una curva de conversión en función del tiempo, como se muestra en la Fig. 1-2. De nuevo, la curva A representa el caso donde el tiempo requerido para alcanzar las condiciones de equilibrio es grande, en tanto que en el caso B, la conversión de equilibrio se alcanza con más rapidez y se logra esencialmente en un tiempo finito. Las curvas A y B de la Fig. 1-2 podrían aplicarse con exactitud a la misma reacción; la diferencia entre ellas se debe a que la velocidad en el caso B ha sido aumentada, por ejemplo, mediante el uso de un catalizador. La velocidad de la reacción aumenta en su **catalizada**, pero la conversión de equilibrio mostrada en la Fig. 1-2, es la misma para los dos casos.

El tiempo disponible para efectuar una reacción **química** en escala comercial se encuentra limitado si el proceso **debe** ser económico. Por esto, el intervalo importante de las curvas en las Figs. 1- 1y 12, desde el punto de vista práctico, es a valores de tiempos bajos. Por otra parte, la conversión de equilibrio es importante comouna



Fig. l-l Velocidad de reacción en función del tiempo.

referencia para evaluar el rendimiento real del equipo de reacción. Supóngase que se lleva a cabo un experimento cinético con un tiempo que corresponde a la línea vertical punteada de la Fig. 1-2. A este tiempo, la conversión para la reacción no catalítica es casi de 25% (curva A). La comparación con el valor de equilibrio de 50% indica que la velocidad no catalítica es muy baja y que se aconseja la búsqueda de un catalizador. La curva B, dando una conversión de 45%, muestra el beneficio de emplear un catalizador y también indica que no se justifica el esfuerzo adicional para la búsqueda de un catalizador más efectivo. Sin el conocimiento previo



Fig. 1-2 Conversión en función del tiempo

en conversiones de equilibrio, puede llegarse a conclusiones erróneas a partir de los estudios de cinética que muestan las curvas A y B. Por ejemplo, puede deducise que el catalizador que da la curva B es moderadamente activo y se puede gastar un tiempo considerable intentando descubrir un catalizador que dé una conversión de 70 y 80%. Los cálculos temodinámicos son en lo particular valiosos para estas comparaciones. Sin embargo, el **diseño** actual del equipo de reacción depende, generalmente, de la localización de las curvas mostradas en las Figs. 1-1 y 1-2 y, por tanto, deben determinarse mediante estudios cinéticos.

La predicción de la conversión de equilibrio requiere conocimientos de los cambios de energía libre de las reacciones involucradas. Aunque la cantidad de datos termodinámicos está en constante aumento, todavía no es posible estimar con precisión la conversión de equilibrio para todas las reacciones. Los cálculos y datos disponibles para sistemas gaseosos son los más confiables. En la siguiente sección se ilustra brevenente la aplicación de la termodinámica a este tipo de cálculos. Para un tratamiento más detallado de la termodinámica del equilibrio de las reacciones químicas, se recomienda consultar algún texto sobre termodinámica.<sup>9</sup>

La velocidad de transferencia de energía tiene importancia en la determinación de la distribución de temperatura en los reactores. Además, en los cálculos de equilibrio intervienen los calores de reacción. La siguiente sección está dedicada a los datos y los mátodos referentes a los calores de reacción, seguidos de una discusión de la conversión de equilibrio.

### 1-4 Termodinámica de las reacciones químicas

Calor de reacción. El *calor de reacción* se define como la energía absorbida por un sistema cuando los productos de una reacción se llevan a la misma temperatura que los reactantes. Para una definición completa de los estados termodinámicos de los productos y los reactantes, también es necesario especificar la presión. Si se toma la misma presión para ambos, el calor de reacción es igual al cambio de entalpía; ésta es la definición combinando los calores de formación o los calores de combustión de los productos y los reactantes. Por tanto, la información básica necesaria para calcular los calores de reacción son los calores de formación y de combustión. Existen tablas muy detalladas de este tipo de datos, y en la Tabla H se muestran algunos valores para una temperatura de 298 K (25 "C).

Cuando no se cuenta con datos experimentales, existen algunos procedimientos para predecir los calores de reacción. Todos ellos están basados en predicciones de los efectos de las diferencias de estructura química entre los reactantes y los **produc**-

<sup>&</sup>lt;sup>9</sup> J. G. Kirkwood e Irwin Oppenheim, "Chemical Thermodynamics," McGraw-Hill Book Company, New York, 1961; G. N. Lewis y M. Randall, "Thermodynamics", 2a. Ed., revisada por K. S. Pitzer y Leo Brewer, McGraw-Hill Book Company, New York, 1961; J. M. Smith y H. C. Van Ness, tion to Chemical Engineering Thermodynamics," 3a. Ed., McGraw-Hill Book Company, New York, 1975; H. C. Van Ness, "Classical Thermodynamics of Non-electrolyte Solutions," The Macmillan pany, Inc., New York, 1964; F. Van Zeggeren y S. H. Story, "The Computation of Chemicat Equilibria," Cambridge University Press, New York, 1970.

| Sustancia                                 | Fórmula                                      | Estado | ΔH° <sub>/298</sub> | —Δ <i>H°</i> ,298 |
|-------------------------------------------|----------------------------------------------|--------|---------------------|-------------------|
| Parafinas normales                        |                                              |        | _                   |                   |
| Metano                                    | CH                                           | 8      | -17 889             | 212 800           |
| Etano                                     | C2H6                                         | 8      | -20 236             | 372 820           |
| Propano                                   | C3H                                          | 8      | -24 820             | 530 600           |
| n-Butano                                  | C4H10                                        | g      | -30 150             | 687 640           |
| n-Pentano                                 | C <sub>3</sub> H <sub>12</sub>               | g      | -35 000             | 845 160           |
| n-Hexano                                  | C <sub>4</sub> H <sub>14</sub>               | 8      | -39 960             | 1 002 570         |
| Incremento por átomo<br>de C después de C |                                              | g      | -4 925              | 157 440           |
| Monoolefinas nomales (1-alquenos)         | •000.VY                                      |        |                     |                   |
| Etileno                                   | C,H,                                         | g      | 12 4%               | 337 150           |
| Propileno                                 | C.H.                                         | 8      | 4 879               | 491 990           |
| 1-Buteno                                  | C <sub>4</sub> H <sub>4</sub>                | g      | -30                 | 649 380           |
| 1-Penteno                                 | C <sub>5</sub> H <sub>10</sub>               | 8      | -5000               | 806 700           |
| 1-Hexeno                                  | C.H.,                                        | g      | -9 960              | 964 260           |
| Incremento por <b>átomo</b>               | 111                                          | g      | -4 925              | 157 440           |
| de C después de C                         |                                              | _      |                     |                   |
| Otros compuestos orgánicos                |                                              |        |                     |                   |
| Acetaldehido                              | C <sub>2</sub> H <sub>4</sub> O              | g      | -39 760             |                   |
| Acetileno                                 | C <sub>2</sub> H <sub>2</sub>                | 8      | 54 194              | 310 620           |
| Acido acético                             | $C_2H_4O_2$                                  | /      | -116 400            |                   |
|                                           | C <sub>6</sub> H <sub>6</sub>                | g      | 19 820              | 789 080           |
| Benceno                                   | C <sub>6</sub> H <sub>6</sub>                | 1      | 11 720              | 780 980           |
| 1-3-Butadieno                             | C4H4                                         | g      | 26 330              | 607 490           |
| Cidohexano                                | C <sub>6</sub> H <sub>12</sub>               | g      | -29 430             | 944 790           |
| Cidohexano                                | C4H12                                        | 1      | -37 340             | 936 880           |
| Estireno                                  | C <sub>0</sub> H <sub>0</sub>                | g      | 35 220              | 1060900           |
| Etanol                                    | C <sub>2</sub> H <sub>4</sub> O              | 8      | -56 030             |                   |
| Etanol                                    | C <sub>2</sub> H <sub>4</sub> O              | 1      | -66 200             | 1 101 120         |
| Etilbenceno                               | C <sub>8</sub> H <sub>10</sub>               | 8      | 7 120               | 1 101 120         |
| Etilenglicol                              | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> | 1      | -108 580            |                   |
| Metanol                                   | CH40                                         | 8      | -48 100             |                   |
| Metanol                                   | СҢО                                          | 1      | -57 036             | 1000500           |
| Melicionexano                             | C <sub>7</sub> H <sub>14</sub>               | 8      | -36 990             | 1099590           |
| Metilciclohexano                          | C <sub>7</sub> H <sub>14</sub>               | 1      | -45 450             | 1091 130          |
| Oxido de etileno                          | C <sub>2</sub> H <sub>4</sub> O              | 8      | -12 190             |                   |
| Tolueno                                   | C,H                                          | 8      | 11 950              | 943 580           |
| Tolueno                                   | C <sub>7</sub> H <sub>4</sub>                | 1      | 2 870               | 934 500           |
| Compuestos inorgánicos                    | Compuestos inorgánicos                       |        |                     |                   |
| Agua                                      | n <sub>2</sub> 0                             | 8      | -5/ /89             |                   |
| Agua N                                    | H <sub>2</sub> O                             | 1      | -08 31/             |                   |
| AIIIOIIIaCU                               | NH <sub>3</sub>                              | g      | -1040               |                   |

Tabla l-l Calores normales de formación y combustión para productos de la reacción  $H_2O(1)$  y CO&) **325** °C, en calorías por mol gramo<sup>10</sup>

<sup>10</sup> Puesto que la mayoría de las comparaciones de calores de reacción están dadas en valores de las Tablas II y 1-2 están en estas unidades. Para transformar en unidades SI de joule/(mol kg), los valores en cal/(mol g) se multiplican por 4.1868 x 10<sup>3</sup>. Par ejemplo, el calor de formación del metano a 298 K es -17 889 (4.1868 x 10<sup>3</sup>) = 74.898 x 10<sup>4</sup> J/(mol kg) o 74.898 x 10<sup>3</sup> kg/(mol kg).

#### 32 Ingeniería de la cinética química

#### Sustancia Fórmula Estado AHº no - AH° 200 Azufre: H,SO, Acido sulfúrico 1 -193 910 Bióxido SO2 -70 960 g Trióxido -94 450 SO<sub>3</sub> g Trióxido 1 SO, -104 800 Calcio: Carbonato 450 CaCO<sub>1</sub> \$ -288 Carburo CaC<sub>2</sub> -15 000 S Cloruro -190 000 CaCl, S Cloruro -623 150 CaCl, 6H,O 5 Hidróxido Ca(OH), -235 800 S Oxido CaO -151 900 S Carbono. grafito Carbono elemental с 94 052 Bióxido CO<sub>2</sub> -94 052 8 Monóxido СО -26 416 67 636 2 Hidrogeno: HCI -22 063 Cloruro g Hidrógeno H, elemental 2 68 317 Sulfuro H<sub>2</sub>S g - 4 815 Hierro: Fe0 -64 300 Oxido 5 Oxido Fe,O, s -267 000 Oxido Fe<sub>2</sub>O<sub>3</sub> 5 -196 500 Sulfuro FeS, 5 -42.520 Litio: -97 700 Cloruro LiCl 5 Cloruro LiCI H<sub>2</sub>O 5 -170 310 Cloruro LiCl·2H<sub>2</sub>O -242 100 5 Cloruro LiCI · 3H<sub>2</sub>O -313 500 \$ Nitrógeno HNO. Acido nítrico 1 -41 404 Oxidos NO 21 570 g NO<sub>2</sub> 7 930 g 19 513 N,0 g N,O. 2 190 8 Sodio: -270 300 Carbonato Na<sub>2</sub>CO<sub>3</sub> \$ ( arbonato Na2CO3 1 0H2O -975 600 s Cloruro NaCl -98 232 s Hidróxido -101 990 NaOH \$

### Tabla 1-1 (Continuación)

REFERENCIA: La mayor parte de estos valores fueron seleccionados de las publicaciones de Selected Values of Chemical 'fhermodynamic Properties, Natl. Bur. Stds. Circ. 500, 1952.

tos. **Reid**, Prausnitz y **Sherwood**<sup>11</sup> han descrito y evaluado los métodos más confiables. Este procedimiento es aplicable a compuestos de carbono, hidrógeno, oxígeno, nitrógeno y los halógenos.

La variación del calor de reacción con la temperatura depende de la diferencia de capacidades caloríficas molares de los productos y los reactantes. La siguiente ecuación relaciona AH a cualquier temperatura T con el valor conocido a la temperatura  $T_0$ :

$$\mathbf{AH}, = \mathbf{AH},, + \int_{T_0}^{T} \Delta c_p \, dT \tag{1-1}$$

En este caso,  $\Delta C_{\mu}$  es la diferencia de capacidades caloríficas molares,

$$\Delta c_p = \sum (N_i c_{p_i})_{\text{prod}} - \sum (N_i c_{p_i}) \text{react}$$
(1-2)

Si se conocen las capacidades caloríficas *malias*,  $C_{\mu}$ , para los reactantes y productos en un intervalo de temperatura  $T_{0}$  a T, no es necesario integrar la **Ec.** (1-1). Bajo estas condiciones, **la** relación entre  $\Delta H_{T}$  y AH, es

$$\Delta H_T = \Delta H_{T_0} + \sum \left( N_i \, \bar{c}_{p_i} \right)_{\text{prod}} \left( T - T_0 \right) - \sum \left( N_i \, \bar{c}_{p_i} \right)_{\text{react}} \left( T - T_0 \right) \tag{1-3}$$

Cuando los reactantes y los productos entran y salen de un reactor a temperaturas diferentes, generalmente es más simple no calcular  $\Delta H_T$  y evaluar directamente la cantidad de energía que se quiere determinar. En el Ej. l-l se ilustra este procedimiento.

El efecto de la presión sobre el calor de reacción para sistemas gaseosos depende de la desviación del comportamiento de los componentes con respecto a los gases ideales. Si los reactantes y los productos se comportan como gases ideales, el efecto es nulo. Aun para los sistemas poco ideales, el efecto de la presión suele ser **pequeño**. Los detalles de los métodos para el cálculo de los efectos de la temperatura y la presión pueden encontrarse en los textos de **termodinámica**.

En el siguiente ejemplo se ilustra la aplicación de la información de calores de reacción para el cálculo de las velocidades de transferencia de energía en reactores.

Ejemplo 1-1. El óxido de etileno se **produce** por oxidación directa con aire, empleando un lecho de partículas catalíticas (plata sobre un material inerte apropiado). Supóngase que la corriente entra al reactor continuo a 200 °C y que contiene 5 mol % de etileno y 95% de aire. Si la temperatura de salida no excede de 260 °C, es posible convertir el 50% del etileno a óxido, aun cuando el 40% se quema tambitn completamente hasta bióxido de carbono. ¿Que cantidad de calor debe eliminarse a la **reacción** por mol de etileno alimentado para que no se exceda esta temperatura límite? La capacidad calorífica molar promedio del etileno puede tomarse como 18 Btu/(mol 1b) (°R) entre 25 y 200 °C y como 19 entre 25 y 260 °C. Los valores similares para el óxido de etileno son 20 y 21 Btu/(mol lb) (°R). La presión es esencialmente atmosférica.

SOLUCIÓN. Puesto que los efectos caloríficos a presión constante son iguales a los cambios de entalpía, el proceso real puede reemplazarse por uno que utilice los datos de calores de reacción disponibles en la Tabla 1-1 a 25 °C. Este proceso se divide en etapas, como sigue:

- 1. Enfriar los reactantes y el aire de 200 a 25 "C.
- 2. Efectuar las reacciones a 25 °C.
- 3. Calentar los productos y el aire de 25 a 260 "C.

La suma de los cambios de entalpía para cada etapa será el calor total absorbido por el sistema reaccionante.

*Etapa* 1. En base a un mol de etileno, habrá  $\frac{93}{1} = 19$  moles de aire **alimen**tándose al reactor. La capacidad calorífica media del aire de **25°C** a 200 °C es 7.0. Por tanto,

$$AH_{,} = 1(18)(+77 - 392) + 19(7.0)(+77 - 392) = -5\ 700 - 41900$$
$$= -47\ 600\ Btu/mol\ 1b$$

Etapa 2. El único efecto calorífico se debe a las dos reacciones

$$C_2H_4 + \frac{1}{2}O_2 \rightarrow C_2H_4O(g)$$
  

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O(g)$$

Usando la información de calor de formación de la Tabla l-l, se obtiene para la primera reacción

y para la segunda

$$AH_{m} = 2(-57798) + 2(-94052) - 12496 - 0$$
  
= -316 196 cal/mol g o -569000 Btu/mol lb

Puesto que por cada mol de etileno **habra** 0.5 mol que reacciona para formar óxido de etileno y 0.4 mol que se quemará completamente,

$$AH_{T_0} = 0.5(-44\,500) + 0.4(-569\,000)$$
$$= -250\,000 \text{ Btu/mol } \text{lb}$$

Eupa 3. Los productos consistirán de las siguientes cantidades:

Etileno = 1 - 0.5 - 0.4 = 0.1 mol Oxido de etileno = 0.5 mol Vapor de agua = 2(0.4) = 0.8 mol ( $c_{e} = 8.25$ ) Bióxido de carbono = 2(0.4) = 0.8 mol ( $\overline{C_p} = 9.4$ ) Nitrógeno = 19(0.79) = 15.0 moles ( $\overline{C_p} = 7.0$ ) Oxígeno =  $19(0.21) - \frac{1}{2}(0.5) - 3(0.4) = 2.6 \text{ moles}$  ( $\overline{C_p} = 7.25$ ) Los valores que se indican para  $\overline{C_p}$  son valores medios entre 25 y 260 °C:

$$AH, = [0.1(19) + 0.5(21) + 0.8(8.25) + 0.8(9.4) + 15(7.0) + 2.6(7.25)](500 - 77) = 150(500 - 77) = 63 500 Btu/mol1b$$

Entonces el calor neto absorbido será

$$Q = -47\,600 - 250\,000 + 63\,500$$
  
= - 234 000 Btu/mol 1b de etileno o  $y(4.1868 \times 10^3)$   
= 544 x 10<sup>6</sup> J/(mol kg)

Por lo que el calor que debe extraerse es 234 000 Btu/mol **1b** de etileno alimentado al reactor.

Equilibrio químico-Una sola reacción. Cuando una reacción se verifica en el equilibrio, la temperatura y la presión permanecen constantes en el sistema y el cambio de energía libre es cero. Estos límites pueden emplearse para desarrollar la siguiente relación entre el cambio de energía libre *normal*,  $\Delta F^{o}$  y la constante de equilibrio K.

$$AF'' = -R_g T \ln K \tag{1-4}$$

La variación de energía libre normal  $\Delta F^{\circ}$  es la diferencia entre las energías libres de los productos y los reactantes, cuando cada especie se considera en su estado normal. Estos estados normales se seleccionan de tal manera que la evaluación de la energía libre sea lo más simple posible. Por ejemplo, el estado normal para los gases es generalmente el que corresponde a una fugacidad unitaria a la temperatura de la reacción. Si el gas es ideal, este estado normal equivale a 1 atm de presión.

La constante de equilibrio K se define en términos de las actividades en el equilibrio,  $a_i$ , de los reactantes y los productos. Para una reacción general

$$aA + bB = cC + dD \tag{1-5}$$

la constante de equilibrio es

$$K = \frac{a_c^c a_D^d}{a_A^a a_B^b} \tag{1-6}$$

Las actividades se refieren a las condiciones de equilibrio en la mezcla reaccionante **y** se definen como la relación de la fugacidad en la mezcla en equilibrio a la del estado normal; es decir,
$$a_i = \frac{f_i}{f_i^\circ} \tag{1-7}$$

Para reacciones gaseosas con un estado normal de fugacidad unitaria, la expresión de la constante de equilibrio se transforma en

$$K = \frac{f_C^c f_D^d}{f_A^d f_B^b} \tag{1-8}$$

Cuando, ademas, los gases obedecen la ley de los gases ideales, la fugacidad es igual a la presión, y la Ec. (1-8) se reduce a

$$K = \frac{\dot{p}_C^c p_D^d}{p_A^a p_B^b} \tag{1-9}$$

En este caso, p (presión parcial) es la presión total  $p_r$  multiplicada por la fracción molar del componente en la mezcla; por ejemplo,

$$p_A = p_t y_A \qquad (1-10)$$

En muchas situaciones no se justifica suponer que los gases se comportan idealmente, y resulta necesario evaluar las fugacidades. Este es el caso de algunas reacciones como la síntesis del amoníaco, para la cual la presión de operación puede llegar a ser hasta de 1500 atm. La fugacidad en la **Ec**. (1-8) es la del componente en la mezcla en equilibrio. Sin embargo, por lo general solamente se conoce la fugacidad del componente puro. Para relacionar estos dos valores debemos contar con algunos conocimientos relativos a la forma en que la fugacidad depende de la composición. Generalmente no se dispone de este tipo de información, por lo que se hace necesario plantear suposiciones con respecto al comportamiento de la mezcla reaccionante. La suposición mas simple y más común consiste en considerar que la mezcla se comporta como una solución ideal. Entonces, la fugacidad en el **equilibrio**, **f**, está relacionada a la fugacidad del componente puro, **f**, a la misma presión y temperatura, por medio de

$$f_i = f'_i y_i \tag{I-1 1}$$

Sustituyendo esta expresión en la Ec. (1-8) se obtienen las ecuaciones para la constante de equilibrio en términos de las fugacidades de los componentes puros y de la composición de la mezcla en equilibrio,

$$K = \frac{(f'_{C})^{e} (f'_{D})^{d}}{(f'_{A})^{a} (f'_{B})^{b}} K_{y}$$
(1-12)

$$K_{y} = \frac{y_{r}^{c} y_{n}^{d}}{y_{A}^{b} y_{B}^{b}}$$
(1-13)

En las reacciones gaseosas frecuentemente se usa la cantidad

 $K_{p}$ , que se define como

$$K_{p} = \frac{(y_{C}p_{t})^{c}(y_{D}p_{t})^{d}}{(y_{A}p_{t})^{a}(y_{B}p_{t})^{b}} = K_{y}p_{t}^{(c+d)-(a+b)}$$
(1-14)

La **Ec.** (1-9) nos indica que para una mezcla reaccionante de gases ideales,  $K = K_p$ . También se puede emplear la **Ec.** (1-14) para sistemas no ideales para calcular  $K_p$  a partir de las mediciones de composiciones en equilibrio  $(K_p)$ . Sin embargo,  $K_p$  ya no es igual a K determinada por medio de datos termodinámicos, esto es, en base a la **Ec.** (1-4).

La **Ec**. (1-12) permite evaluar la relación de composiciones K, en términos de la constante de equilibrio. Este es un paso necesario para la evaluación de la conversión de equilibrio a partir de datos de energías libres. Las etapas de este proceso son como sigue:

- 1. Evaluación de  $\Delta F^{\circ}$ .
- 2. Determinación de la constante de equilibrio K, usando la Ec. (1-4).
- 3. Obtención de  $K_{\mu}$  a partir de la Ec. (1-12).
- 4. Cálculo de la conversión a partir de  $K_{v}$ .

La primera y la segunda etapas requieren datos termodinámicos. En la Tabla 1-2 se muesta una breve tabulación de los cambios de energías libres normales a 298 K. Existen publicaciones con información más extensa."? Ademas, se han desarrollado también procedimientos de estimación para los casos en los que no se dispone de **datos.**<sup>13</sup>

Generalmente es necesario calcular el efecto de la temperatura sobre  $\Delta F^o$  para poder obtener una constante de equilibrio en las condiciones de la reacción La ecuación de van't Hoff expresa esta relación en forma diferencial,

$$\frac{d(\ln K)}{dT} = \frac{AH''}{R_a T^2}$$
(1-15)

donde  $\Delta H^0$  es el cambio de entalpía en estado normal para la reacción considerada. La **Ec**. (1-15) tiene implicaciones importantes en el **diseño** de reactores para reacciones reversibles. Indica que, para una reacción exotémica, K disminuye cuando se aumenta la temperatura. Esto quiere decir que se deben tomar medidas para eliminar el calor de la reacción y evitar así una limitación temodirámica (disminución de K) para la conversión potencial en los sistemas exotémicos. La oxidación del bióxido de azufie constituye una ilustración práctica. En las reacciones reversibles endotémicas es necesario **añadir** energía para mantener la temperatura, cuando se desea

| Sustancia                                      | Fórmula                                      | Esta   | ado <b>∆F°<sub>/216</sub></b> |
|------------------------------------------------|----------------------------------------------|--------|-------------------------------|
| Parafinas normales                             |                                              |        |                               |
| Metano                                         | CH.                                          | g      | -12 140                       |
| Etano                                          | C <sub>2</sub> H <sub>4</sub>                | g      | -7 860                        |
| Propano                                        | C <sub>1</sub> H <sub>1</sub>                | g      | -5 164                        |
| n-Butano                                       | C.H.                                         | 2      | -4 100                        |
| n-Pentano                                      | C.H.,                                        | p      | -2000                         |
| n-Hexano                                       | C.H.                                         | p      | -70                           |
| n-Heptano                                      | C.H.                                         | 0      | 1 920                         |
| n-Octano                                       | C.H.                                         | 6      | 3 920                         |
| Incremento por átomo de C después de C         |                                              | g      | 2010                          |
| Monoolefinas normales (1-alquenos)             |                                              |        |                               |
| Etileno                                        | C.H.                                         | 8      | 16 282                        |
| Propileno                                      | C.H.                                         | 6      | 14990                         |
| 1-Buteno                                       | C.H.                                         | 0      | 17 090                        |
| 1-Penteno                                      | C.H.                                         | 5      | 18 960                        |
| 1-Hexeno                                       | C.H.                                         | 5      | 20 940                        |
| Incremento por <b>atomo</b> de C después de C. | C61112                                       | e<br>e | 2 010                         |
| Otros compuestos orgánicos                     |                                              | -      |                               |
| Acetaldehido                                   | C.H.O                                        |        | -31 960                       |
| Acetileno                                      | CH                                           | 8      | 50000                         |
| Acido acético                                  | CHO                                          | 5      | 01 800                        |
| Benceno                                        | C1402                                        |        | 30989                         |
| Benceno                                        | CH                                           | 8      | 20 756                        |
| 1-3-Butadieno                                  | CH                                           | 1      | 25 150                        |
| Ciclobevano                                    | C4n4                                         | g      | 30 010<br>7EQQ                |
| Ciclohexano                                    | C6112                                        | 8      | 6 270                         |
| Estimo                                         | C <sub>6</sub> H <sub>12</sub>               |        | 5 J/U                         |
| Etanol                                         | C II O                                       | g      | 40 120                        |
| Etanol                                         | C2H6O                                        | g      | -40 150                       |
| Etanol                                         | C <sub>2</sub> H <sub>6</sub> O              | '      | 41 650                        |
| Etilbenceno                                    | C.H 10                                       | 8      | 31 208                        |
| Etilenglicol                                   | C <sub>2</sub> H <sub>6</sub> O <sub>2</sub> | 1      | -77 120                       |
| Mețanol                                        | CH4O                                         | g      | -38 810                       |
| Metanol                                        | CHO                                          | 1      | -39850                        |
| Methololol                                     | C7H14                                        | 8      | 6 520                         |
| Metilciclohexano                               | C7H14                                        |        | 4860                          |
| Oxido de etileno                               | C <sub>2</sub> H <sub>4</sub> O              | g      | -2790                         |
| Tolueno                                        | C7H                                          | g      | 29228                         |
| Tolueno                                        | C <sub>7</sub> H <sub>e</sub>                | 1      | 27 282                        |
| Compuestos inorgânicos                         |                                              |        |                               |
| Agua                                           | H <sub>2</sub> O                             | 8      | -54635                        |
| Agua                                           | H <sub>2</sub> O                             | 1      | -56690                        |
| Amoníaco                                       | NH <sub>3</sub>                              | 8      | -3 976                        |
| Amoníaco                                       | NH3                                          | a,     | -6 370                        |
| Azufre:                                        |                                              |        |                               |
| Acido sulfúrico                                | H <sub>2</sub> SO <sub>4</sub>               | a,     | -177 340                      |
| Bióxido                                        | SO <sub>2</sub>                              | g      | -71790                        |
| Trióxido                                       | SO3                                          | 8      | -88 520                       |

#### Tabla 1-2 Energías libres normales de formación a 298 K, cal/(mol g).

ł,

| Sustancia     | Fórmula                        | Estado       | $\Delta F^{o}_{,290}$ |
|---------------|--------------------------------|--------------|-----------------------|
| Calcio:       |                                |              |                       |
| Carbonato     | CaCO <sub>3</sub>              | <b>s</b> -20 | 59 780                |
| Carburo       | CaC <sub>2</sub>               | <u>s</u> -   | 16 200                |
| Clouio        | CaCl <sub>2</sub>              | s -1'        | 79 300                |
| Cloruro       | CaCl <sub>2</sub>              | aq -19       | 94 880                |
| Hidróxido     | Ca(OH) <sub>2</sub>            | <b>s</b> -2  | 14 330                |
| Hidróxido     | Ca(OH) <sub>2</sub>            | aq -20       | )7 370                |
| Oxido         | Ca0                            | <b>s</b> -14 | 4 400                 |
| Carbdqo:      |                                |              |                       |
| Bióxido       | CO <sub>2</sub>                | g            | 94 058                |
| Monóxido      | CO                             | 8 -          | 32 781                |
| Hidrógeno:    |                                |              |                       |
| Clouro        | HCI                            | g -2         | 22 892                |
| Sulfuro       | H <sub>2</sub> S               | ğ            | -7 892                |
| Hieno:        |                                |              |                       |
| Oxido         | Fe <sub>3</sub> O <sub>4</sub> | <b>s</b> -2- | 42 400                |
| Oxido         | Fe <sub>2</sub> O <sub>1</sub> | <b>S</b> -1' | 77 loo                |
| Sulfuro       | FeS <sub>2</sub>               | 5            | 39 840                |
| Nitrógeno:    |                                |              |                       |
| Acido nítrico | HNO,                           | aq -         | 26 410                |
| Acido nítrico | HNO,                           | 1 -          | 19 loo                |
| Oxidos        | NO                             | 8            | 20 690                |
|               | NO <sub>2</sub>                | 8            | 12 265                |
|               | N <sub>2</sub> O               | 8            | 24 933                |
|               | N2O4                           | g            | 23 395                |
| Sodio:        |                                |              |                       |
| Carbonato     | Na,CO,                         | <b>s</b> -2: | 50 <b>400</b>         |
| Clauro        | NaCl                           | <u>s</u> -9  | 91 785                |
| Clouro        | NaCl                           | aq -         | 93 939                |
| Hidróxido     | NaOH                           | 5 -          | 90 600                |
| Hidróxido     | NaOH                           | aa -1        | 00 184                |

Tabla1-2(Cont.)

Notas: La energía libre de **formación**  $\Delta F_{2,m}^{o}$  es el cambio de energía libre cuando el compuesto considerado se forma a partir de sus elementos, con cada sustancia en su estado normal a 298 K (25 °C). Los estados normales son:

- 1. Gases (g), el gas puro a fugacidad unitaria a 25 "C.
- 2. Líquidos (1) y sólidos (s). la sustancia pura a la presión atmosférica y 25 °C.
- 3. Solutos en solución acuosa (*aq*), la solución hipotética l-mola) del soluto en agua a la presión amosética y 25 °C.

Las unidades de  $\Delta F^{e}$  son calorías por mol gamo de la sustancia considerada.

REFERENCIAS: La mayor parte de estos valores fueron seleccionados de las publicaciones de F. D. sini y cols., Selected Values of Properties of Hydrozathors and Related Compunds, Am, Res. Proj. 44, Carnegie Institute of Technology, Pittsburgh. 1953; así como suplementos en hojas suelas (con permiso del editor); F. D. Rossini y cols., en D. D. Wagman (Editores), Selected Values of Chenical Thermodynamic Properties, Nat. Bur. Stats. Circ. 500.1952, y suplementos en hojas sueltas; G. N. Lewis y M. Randall, "Thermodynamics," 2a Ed, revisada por K. S. Pitzer y Leo Brewer McGraw-Hill Book Company, New York, 1961. evitar una disminución de K. La deshidrogenación de hidrocarburos, tales como butanos y butenos, es un ejemplo de este tipo de situación, en la cual la adición de energía es un factor importante. Si  $\Delta F^o$  es aproximadamente independiente de la temperatura, la forma integrada de la **Ec.** (1-15) es

$$\ln \frac{K_{T_2}}{K_{T_1}} = \frac{-\Delta H^{\circ}}{R_g} \left( \frac{1}{T_2} - \frac{1}{T_1} \right)$$
(1-16)

Si  $\Delta H^{\circ}$  no es constante, pero puede expresarse mediante la Ec. (1-1), la forma integrada es

$$\ln K_T = -\frac{\Delta H_0}{R_g T} + \frac{\Delta a}{R_g} \ln T + \frac{\Delta b}{2R_g} T + \frac{\Delta C}{6R_g} T^2 + C$$
(1-17)

donde  $\Delta H_0$ , Cy  $\Delta a$ , Ab y  $\Delta c$  son constantes y  $\Delta a$ , Ab y  $\Delta c$  se originan de la expressión

$$\Delta c_p = \Delta a + \Delta bT + \Delta cT^2 \tag{1-18}$$

K puede determinarse con las Ecs. (1-17) y (1-18) para una reacción gaseosa a cualquier temperatura, siempre y cuando puedan evaluarse las constantes C y AH,. Los datos experimentales para K a dos temperaturas son suficientes para esta evaluación. Por otra parte, AH, puede calcularse a partir del valor conocido del calor de reacción a una temperatura, por medio de la **Ec.** (1-1). En este caso, solamente se necesita un valor experimental de la constante de equilibrio para determinar la constante C. Claro está, ambos métodos requieren contar con datos de capacidades caloríficas para los reactantes y los productos, para poder evaluar los coeficientes  $\Delta a$ , Ab, y  $\Delta c$ .

La **Ec.** (1-4) proporciona un tercer método para calcular K. **El** valor de  $\Delta F^{\circ}$  a la temperatura deseada se obtiene de la ecuación

$$AF'' = AH'' - TAS''$$
(1-19)

Para usar la **Ec.** (1-19) es necesario evaluar las entropías absolutas a la temperatura de reacción, usando datos de capacidad calorífica y la tercera ley de la **termodinámi**ca. Estas entropías pueden obtenerse de las mismas referencias de la Tabla 1-2. Este método no requiere contar con valores experimentales de *K*.

En los siguientes ejemplos se ilustra la aplicación de estos conceptos para la evaluación de la conversión de equilibrio a partir de datos de energías libres.

**Ejemplo** 1-2. Se han reportado los siguientes datos de equilibrio para la hidratación del etileno a etanol en fase vapor :14 a 145 °C,  $K \approx 6.8 \times 10^{-2}$  y a 320 °C,  $K = 1.9 \times 10^{-3}$ . A partir de esta información, desarrolle las expresiones generales para la constante de equilibrio en función de la temperatura. SOLUCIÓN. Los dos valores de *K* permiten calcular las constantes  $\Delta H_0$  y C en la **Ec**. (1-17). Pero primero es necesario obtener los valores de  $\Delta a$ , Ab y  $\Delta c$  por medio de los datos de capacidades caloríficas. Para la reacción

$$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$$

estos valores son

$$A = C_2H_5OH - C_2H_4 - H_2O$$

$$\Delta a = 6.990 - 2.830 - 7.256 = -3.096$$

$$Ab = 0.039741 - 0.028601 - 0.002298 = 0.008842$$

$$\Delta c = (-11.926 + 8.726 - 0.283) \times 10^{-6} = -3.483 \times 10^{-6}$$

Sustituyendo en la Ec. (1-7), se obtiene, a 145 °C.

$$R_g \ln (6.8 \times 10^{-2}) = -\frac{\Delta H_0}{418} - 3.096 \ln 418 + \frac{0.00884}{2} (418) - \frac{3.483 \times 10^{-6}}{6} (418)^2 + CR,$$

0

$$\frac{\Delta H_0}{418} - CR_r = -R_g \ln(6.8 \times 10^{-2}) = 3.096 \ \text{I418} \\ + 0.00442(418) = (0.580 \times 10^{-6})(418)^2 = -11.59 \ \text{(A)}$$

y a 320 °C

$$\frac{\Delta H_0}{593} - CR_r = -R_g \text{ life } \times 10^{-3} \text{ } \frac{24096 \text{ In } 593}{(0.580 \times 10^{-6})(593)^2} = -4.91 \text{ (B)}$$

Las Ecs. (A) y (B) pueden resolverse simultáneamente para  $\Delta H_0$  y C. Los resultados son

AH, = 
$$-9460$$
 cal  
C =  $-5.56$ 

Entonces, la expresión general para K en función de la temperatura es

$$\ln K = \frac{9,460}{R_g T} - \frac{3.096}{R_g} \ln T + \frac{0.00442}{R_g} T - \frac{0.580 \times 10^{-6}}{R_g} T^2 - 556$$

$$\ln K = \frac{4,760}{T} - 1.558 \ln T + 0.00222T - 0.29 \times 10^{-6} T^2 - 5.56$$

#### 42 Ingenieria de la cinética química

Ejemplo 1-3. Estime la conversión máxima de etileno a alcohol por hidratación en fase vapor a 250 °C y 500 psia. Use los datos de equilibrio del Ej. 1-2 y suponga una relación inicial vapor-etileno de 5.

SOLUCIÓN. La constante de equilibrio a 250 °C puede evaluarse de la ecuación para K desarrollada en el Ej. 1-2:

$$\ln K = \frac{-430}{523} = 10^{-5.56}$$

$$= -5.13$$

$$K = 5.9 \times 10^{-3}$$

Es necesario suponer que la mezcla gaseosa es una solución ideal. Así, la **Ec.** (1-12) resulta ya aplicable y

$$5.9 \ge 10^{-3} = K_y \frac{f'_A}{f'_E f'_W}$$
(A)

Las fugacidades de los componentes puros pueden determinarse en base a correlaciones **generalizadas<sup>15</sup>** y se evalúan a la temperatura y la presión de la macla de equilibrio:

$$\frac{f'_{A}}{R} = 0.84 \qquad \text{para el etanol}$$
$$\frac{f'_{E}}{R} = 0.98 \qquad \text{para el etileno}$$
$$\frac{f'_{W}}{R} = 0.91 \qquad \text{para el agua}$$

Sustituyendo estos datos en la Ec. (A) se obtiene

$$K_y = \frac{y_A}{y_E y_W} = 5.9 \text{ x } 10^{-3} \frac{0.98(0.91)}{0.84} \frac{500}{14.7} = 0.21$$
 (B)

Si la relación inicial vaporetileno es 5 y se selecciona una base de 1 mol de etileno, un balance de materiales proporciona los siguientes resultados para las condiciones de equilibrio:

Etanol = z  
Etileno = 1 
$$-z$$
  
Agua = 5  $-z$   
Moles totales = 6  $-z$ 

<sup>&</sup>lt;sup>15</sup> Por ejemplo, de J. M. Smith y H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics," 1975, McGraw-Hill Book Company, New York, 3a. Ed. Figs. 7-5 y 7-6.

Entonces

$$y_A = \frac{z}{6-z}$$
$$y_E = \frac{1-z}{6-z}$$
$$y_W = \frac{5-z}{6-z}$$

Sustituyendo en la Ec. (B) se obtiene

$$0.21 = \frac{z(6-z)}{(1-z)(5-z)}$$

$$z^{2} - 6.02 + 0.868 = 0$$

$$z = 3.0 + 2.85 = 5.85 \qquad 0 \ 0.15$$

La primera solución es superior a la unidad, por lo que es imposible. Por consiguiente, z = 0.15, lo que indica que se puede convertir el 15% del etileno en etanol, siempre y cuando se logren las condiciones de equilibrio.

En esta reacción, un aumento de la temperatura disminuye tanto *K* como la conversión. La elevación de la presión aumenta la conversión. Desde el punto de vista del equilibrio, la presión de operación debe ser tan alta como resulte posible (limitada por la condensación) y la temperatura debe mantenerse lo más baja posible. Para obtener una velocidad apreciable se requiere un catalizador, pero todos los catalizadores de los que se dispone en la actualidad necesitan una temperatura de cuando menos 150 °C para una velocidad razonablemente rápida. Aun a esta temperatura, los catalizadores que se han desarrollado no producen más que una fracción de la conversión de equilibrio. En este caso, tanto el equilibrio como la velocidad de reacción limitan la viabilidad comercial del proceso de la reacción.

Equilibrio químico-reacciones múltiples. En muchos reactores químicos ocurren reacciones indeseables simultáneamente con la principal. En estos casos, la producción del material deseado con respecto a los productos secundarios (esto es, la selectividad, véase el Cap. 2) constituye un factor crítico. En tales casos, la composición de equilibrio es importante, pues representa la composición final que puede obtener-se independientemente de las velocidades de las reacciones. Es posible combinar las Ecs. (1-12) y (1-13) para cada reacción y así obtener una relación entre las fracciones mol de cada especie química involucrada en la reacción. Entonces, el principio de la conservación de la masa (la estequiometría) permite expresar esta relación en términos de una incógnita, el grado de verificación de la reacción. La resolución simultánea de las ecuaciones en serie resultantes, una para cada reacción independiente, proporciona el grado de verificación puede ser difícil cuando las ecuaciones no son lineales. En tales casos es más conveniente usar otro método basado en el requerimiento termodinámico de que la energía libre total del sistema debe tener un valor

0

mínimo en la composición de equilibrio. El procedimiento consiste en formular una expresión para la energía libre total, para reducir esta cantidad al mínimo con respecto a los cambios de composición a temperatura y presión constantes. Esta reducción al mínimo debe efectuarse de tal manera que se conserve la masa de cada elemento (es decir, el número de átomos de cada elemento). El enfoque usual es una aplicación del método de Lagrarge de multiplicadores indeeminados que se describe en los siguientes **párrafos.**<sup>16</sup>

El primer paso consiste en formular las expressiones de la conservación de la masa. Supongamos que el subíndice k identifica un elemento específico. Entonces, se define  $A_k$  como el número total de pesos atómicos del kavo elemento en el sistema. Este valor se conce en base a la composición inicial o de alimentación. Además, se establece que  $a_{ik}$  es el número de átomo del kavo elemento en cada molécula de la especie química *i*. La conservación de la masa de cada elemento k requiere que se satisfaga la siguiente ecuación:

$$\sum_{i} n_i a_{ik} = A_k$$

 $\sum_{i} (n_{i}a_{ik}) - A_{k} = 0 \qquad (k = 1, 2, \dots, m)$ (1-20)

donde  $n_i$  es el número de moles de la especie *i* en la mezcla en equilibrio.

Después la ecuación anterior para cada elemento k se multiplica por una constante indeterminada  $\lambda_k$  (el multiplicador de Lagrange) obteniéndose

$$\lambda_k \sum_{i} (n_i a_{ik}) \quad A_k = 0 \quad (k = 1, 2, \dots, w)$$

Entonces, estas ecuaciones w, una para cada elemento, se suman. Puesto que su suma debe ser igual a cero, podemos escribir que

$$\sum_{k} \lambda_{k} \left[ \sum_{i} n_{i} a_{ik} - A_{k} \right] = 0$$
(1-21)

La suma de la energía libre total  $F_i$  a la  $E_c$ . (1-21) debe producir una nueva cantidad M, y esta M sigue sendo igual a  $F_i$ , pues el lado detecho de la Ec. (1-21) es cero. Por consiguiente, la reducción de M al mínimo también produce un valor mínimo para  $F_i$ . La reducción al mínimo se logra diferenciando M con respecto a las moles de cada especie química i y estableciendo que esta detivada es igual a cero. De esta forma,

$$M = F_i + \sum_{k} \lambda_k \left[ \sum_{i} (n_i a_{ik}) - A_k \right]$$

 <sup>16</sup> El resumen que se expone se basa en un tratamiento
 más detallado explicado por J. M. Smith y H.

 C. Van Ness, "Introduction to Chemical Engineering Thermodynamics," 3a. Ed. Pág. 419, 1975.

$$\left(\frac{\partial M}{\partial n_i}\right)_{T, P, n_j} = \left(\frac{\partial F_i}{\partial n_i}\right)_{T, P, n_j} + \sum_k \lambda_k a_{ik} = 0$$
(1-22)

El subíndice  $n_i$  significa que la diferenciación se lleva a cabo a valores constantes del número de moles de todos los componentes excepto  $n_i$ . El primer término del lado derecho de la **Ec**. (1-22) es el potencial químico  $\mu_i$ . Este potencial está relacionado con la fugacidad, para las reacciones en fase gaseosa (donde el estado normal es el gas ideal a 1 atm de presión), en la siguiente forma:

$$\left(\frac{\partial F_i}{\partial n_i}\right)_{T, P, n_j} = \mu_i = RT \ln f_i + F_i^\circ \tag{1-23}$$

En este caso,  $F_{i}^{o}$  es la energía libre de estado normal de la especie pura *i. Se* selecciona un valor de  $F_{i}^{o}$  que sea cero para los elementos. De esta manera, en el caso de los compuestos,  $F_{i}^{o}$  es igual a la energía libre normal de la formación de la especie *i*, esto es, igual a  $\Delta F_{fi}^{o}$ . Usando esta igualdad de  $F_{i}^{o}$  en la **Ec**. (1-23) y sustituyendo la expressión resultante de  $(\partial F_{i}/\partial n_{i})_{T,F,n}$  en la **Ec**. (1-22) se obtiene

$$\Delta F_{f_i}^{\circ} + RT \ln f_i + \sum_{k} \lambda_k a_{ik} = 0 \qquad (i = 1, 2, \dots, N)$$
(1-24)

La fugacidad  $f_i$  de cada especie química en condiciones de equilibrio en la mezcla, esta relacionada con la composición de la mezcla. De esta forma, existen N ecuaciones de equilibrio de la forma de la **Ec. (1-24)**, una para cada especie química. Además, existen *w* ecuaciones de conservación de la forma de la **Ec. (1-20)**, una para cada elemento. Estas N + *w* ecuaciones pueden resolverse para obtener las N + *w* incógnitas, que son los valores de *n<sub>i</sub>*, de los cuales hay N, y los valores de  $\lambda_{k}$ , de los cuales hay w. Los resultados de *n<sub>i</sub>* determinan la composición de equilibrio, pues la

fracción mol es .  $y_i = n_i / \left(\sum_{i} n_i\right)$ 

Si la mezcla reaccionante es un gas ideal,  $f_i$  está relacionada con  $n_i$  en forma simple por medio de la expresión

$$f_i = P_t \ y_i = P_r \ n_i \left( \sum_i n_i \right)$$

Entonces, la **Ec.** (1-24) puede expresarse directamente en términos de la composición de equilibrio; esto es

$$\Delta F_{f_i}^{\circ} + RT \ln \left( p_t \frac{n_i}{\sum_{i} n_i} \right) + \sum_{k} \lambda_k a_{ik} = 0 \qquad (i = 1, 2, \dots, N)$$
(1-25)

Las ecuaciones son lineales y los cálculos para  $n_i$  pueden efectuarse con facilidad con una computadora. El Ej. 1-4 ilustra este método.

Y

**Ejemplo 1-4.** Se planea producir hidrógeno y monóxido de carbono por medio de la reacción de metano y vapor de agua:

$$CH_4 + H_2O \rightarrow 3H_2 + CO$$

Sin embargo, también se obtiene bióxido de carbono, material indeseable, cuando se usa esta reacción de gas de agua.

$$CO + H_2O \rightarrow CO_2 + H_2$$

La alimentación consiste en dos moles de CH, y 3 moles de  $H_2O$ . Calcule la fracción de metano que se convierte en CO y  $CO_2$ , suponiendo que se puede lograr el equilibrio en un reactor que opera a 1000 K y 1 atm. Los valores de  $\Delta F_f^o$  en estas condiciones son

$$(\Delta F_{f}^{o})_{CH_{4}} = 4610 \text{ cal/(mol g)}$$
  
 $(\Delta F_{f}^{o})_{H_{2}O} = -46\ 030 \text{ cal/(mol g)}$   
 $(\Delta F_{f}^{o})_{CO} = -47'940 \text{ cal/(mol g)}$   
 $(\Delta F_{f}^{o})_{CO_{2}} = -94\ 610 \text{ cal/(mol g)}$ 

SOLUCIÓN. Los valores de  $A_k$  que se requieren se determinan a partir de los números iniciales de moles, y los valores de  $a_{ik}$  provienen directamente de las fórmulas químicas de las especies. En la siguiente tabla se muestran estos valores.

|                         |                                          | Elemento k                               |                                                 |
|-------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|
| _                       | Carbono                                  | Oxígeno                                  | Hidrógeno                                       |
| _                       | $A_{\star}$ = No. de pesos at            | ómicos de <i>k</i> en e                  | el sistema                                      |
|                         | $A_c = 2$                                | $A_0 = 3$                                | $A_{\rm H} = 14$                                |
| Especies i              | $a_{ik}$ = Na de                         | átomos de <i>k</i> por s                 | molécula de <i>i</i>                            |
| CH,<br>H <sub>2</sub> O | $a_{CH_{4},C} = 1$<br>$a_{H_{2}O,C} = 0$ | $a_{CH_{4},0} = 0$<br>$a_{H_{2}0,0} = 1$ | а <sub>сн4. н</sub> 4<br>а <sub>н20.</sub> н -2 |
| CO2                     | $a_{co, C} = 1$<br>$a_{co_2, C} = 1$     | $a_{co,0} = 1$<br>$a_{co_2,0} = 2$       | $a_{\rm CO_2, H} = 0$ $a_{\rm CO_2, H} = 0$     |
| $\mathbf{n}_2$          | "H1.C -0                                 | $H_{2}, 0 - 0$                           | H2, H-2                                         |

A 1 (atm) y 1000 (K), la suposición de gas ideal es razonable, y la fugacidad,  $f_i = p_i y_i$ . Puesto **que**  $p_i = 1$  (atm), la **Ec**. (1-25) se puede escribir como:

$$\frac{\Delta F_{f_i}^\circ}{RT} + \ln \frac{n_i}{\sum n_i} + \sum_k \frac{\lambda_k}{RT} a_{ik} = 0$$

Entonces, las cinco ecuaciones para las cinco especies son

CH,:  

$$\frac{4\,610}{RT} + \ln \frac{n_{CH_4}}{\sum} + \frac{\lambda_C}{RT} + \frac{4\lambda_H}{RT} = 0$$
H<sub>2</sub>O:  

$$\frac{-46\,030}{RT} + \ln \frac{n_{H_2O}}{\sum} + \frac{2\lambda_H}{RT} + \frac{\lambda_O}{RT} = 0$$
CO:  

$$\frac{-47940}{RT} + \ln \frac{n_{CO}}{\sum} + \frac{\lambda_C}{R^-T} + \frac{\lambda_O}{R^-T} = 0$$
CO<sub>2</sub>  

$$\frac{-94\,610}{RT} + \ln \frac{n_{CO_2}}{\sum} + \frac{\lambda_O}{RT} + \frac{2\lambda_O}{RT} = 0$$
H,:  

$$\ln \frac{n_{H_2}}{\sum} + \frac{2\lambda_H}{RT} = 0$$

Las tres ecuaciones de conservación Ec. (1-20) son:

 Para el carbono:
  $n_{CH_4} + n_{CO^+} + n_{CO_2}^2$  

 Para el hidrógeno:
  $4n_{CH_4} + 2n_{H_2O} + 2n_{H_2} = 14$  

 Para el oxígeno:
  $n_{H_2O} + n_{CO} + 2n_{CO_2} = 3$ 

La resolución simultánea computarizada de estas ocho ecuaciones, con R = 1.987 cal/(mol g)(K) produce los siguientes valores

$$n_{CH_4} = 0.1722$$
  

$$n_{H_2O} = 0.8611$$
  

$$n_{H_2} = 5.7934$$
  

$$n_{CO} = 1.5172$$
  

$$n_{CO_2} = \underline{0.3107}$$
  

$$\sum n_i = n = 8.6546 \text{ moles}$$

Los valores de  $\lambda_{k}$  (que no son pertinentes) son:  $\lambda_{c} = 1584$ ,  $\lambda_{o} = 49870$  y  $\lambda_{H} = 3994$ .

En base a estos resultados, la fracción total de metano que ha reaccionado es (2 - 0.1722)/2, o 0.914. La fracción de CH, que reacciona a CO es 1.5172/2 = 0.759 y la fracción que se transforma en Co<sub>2</sub> es 0.3107/2, o 0.155. Por tanto, del metano que reacciona, 0.155/0.914 = 0.17 o 17% se transforma en CO<sub>2</sub> indeseable y 83% en CO.

#### 1-5 Clasificación de los reactores

Los reactores químicos pueden tener una gran variedad de **tamaños**, formas y condiciones de operación. Uno de los más comunes es el **pequeño** matraz o vaso que se usa en el laboratorio químico para las reacciones en fase líquida. El otro extremo en cuanto al **tamaño** lo constituyen los grandes recipientes cilíndricos empleados en la industria del petróleo, por ejemplo, en el cracking de hidrocarburos. De **tamaño** aun más grande son las "retortas" que se usan para la producción **in situ** del querógeno del petróleo de esquisto. En este caso, la reacción entre el residuo carbonoso de la roca y el oxígeno proporciona el calor necesario para licuar y descomponer el **queró**gen0 en petróleo.

En el vaso de laboratorio se agrega una carga de reactantes que se lleva hasta la temperatura de reacción, se mantiene en estas condiciones por un determinado lapso de tiempo, y después se extrae el producto de la reacción. Este *reactorpor lotes o intermitente* se caracteriza por la variación en el grado de reacción y en las propiedades de la mezcla reaccionante con el transcurso del *tiempo*. El reactor para el cracking de hidrocarburos opera en forma continua con un flujo estable tanto de entrada de **reac**tantes como de salida de productos. Esta clase de reactores corresponde al *tipo de flujo continuo*, en el cual el grado de reacción puede variar con respecto a la posición en el reactor, pero no en función del tiempo. Por tanto, una de las clasificaciones de los reactores se basa en el método de operación.

Otra de las clasificaciones se refiere a la forma. Si el recipiente de laboratorio está equipado con un agitador eficiente, la composición y la temperatura de la masa reaccionante tenderán a ser iguales en todas las zonas del reactor. Un recipiente en el cual existe uniformidad de propiedades recibe el nombre de reactor de tanque 'con agitación (o con buen mezclado) o RTA. Si no existe mezclado en la dirección del flujo en el recipiente cilíndrico para el procesamiento de hidrocarburos, esto constituve otro tipo ideal: el reactor ideal de flujo tubular o flujo tapón. En este caso, la masa reaccionante consiste de elementos de flujo que son independientes entre sí, teniendo cada uno diferente composición, temperatura, etc. Esta clasificación tiene una importancia básica en el diseño, pues para cada tipo de reactor ideal se pueden aplicar formas simplificadas de las ecuaciones de conservación de la masa y la energía. En los reactores reales pueden presentarse todas las condiciones de mezclado entre los extremos de tanque con agitación y flujo tapón. Deberá tomarse en cuenta también que las condiciones de operación y los accesorios del reactor, así como su forma, pueden afectar a las condiciones de mezclado. De esta manera, el diseño del agitador y su velocidad (rpm), pueden afectar las condiciones de buen mezclado de un recipiente de tipo tanque. De manera similar, la velocidad de flujo y el método de inyección de la alimentación pueden tener influencia sobre el flujo tapón de un reactor de flujo tubular. Aunque es difícil lograr condiciones de buen mezclado en un reactor tubular, una línea de alimentación de tipo tobera y una alta velocidad de flujo pueden causar algo de mezclado en la dirección axial.

Las dos clasificaciones, por lote o continuo, y de tanque o tubo, no están necesariamente interrelacionadas. De esta forma, el reactor de vaso de laboratorio se describe como un sistema intermitente, pero puede transformarse en un aparato de flujo continuo. Esto se logra adaptando tubos para la adición continua de los **reac**tantes y la extracción continua de los productos. Además, un reactor tubular también puede operarse por lotes. Esto no se lleva a cabo introduciendo un agitador, pues es difícil logar una concentración uniforme en un tubo largo por medio de una agitación. Sin embargo, es posible obtener los mismos resultados recirculando la mezcla reaccionante a altas velocidades a través del tubo, por medio de un circuito Ferrado. A este sistema se le llama reactor *intermitente con recirculación*.

Una tercera clasificación se refiere al número de fases en el sistema reaccionante. Esta clasificación tiene importancia porque afecta al número y a la importancia

de las etapas de transferencia de masa y energía que tienen que incluirse en el problema de diseño. Considérese como ilustración el caso de las dos formas de reactor de tanque con agitación operado por lotes. En la Fig. 1-3a, la mezcla reaccionante de reactantes líquidos A y B y el producto C es homogénea. Con un agitador eficiente, la composición será casi uniforme en todo el tanque, y no existirán resistencias a la transferencia de masa debidas a gradientes de concentración. En la Fig. 1-3b se ha agregado un catalizador consistente en partículas pequeñas de un sólido, con el objeto de aumentar la velocidad de reacción. Aun cuando la agitación sea eficiente, existir& una resistencia a la transferencia de masa entre volumen total de fluido y la superficie de las partículas catalíticas. Esto se debe a que las partículas, siendo pequeñas, tienden a moverse con el líquido. Existirá una capa de líquido casi inmóvil (con respecto a la partícula) rodeando a cada partícula. Los reactantes A y B deben ser transferidos por difusión a través de esta capa para llegar a la superficie catalítica. Esta resistencia a la difusión resultar8 en una diferencia de concentración, tanto para A como para B, entre la totalidad del fluido y la superficie catalítica. Por consiguiente, debe usarse el concepto de velocidad global ya descrito para explicar el acoplamiento de las cinéticas intrínsecas (en la superficie catalítica) y la transferencia de masa. Es importante recordar que la necesidad de considerar tanto la transferencia de masa como las cinéticas intrínsecas se debe a la naturaleza heterogénea del sistema. La naturaleza catalítica de la reacción no es responsable por el efecto de difusión. Esta misma interacción de cinéticas intrínsecas y difusión puede presentarse en las regiones heterogéneas no catalíticas tales como la fundición de minerales metálicos (por ejemplo,  $\operatorname{ZnS}(s) + {}^{3}_{2}O_{2}(g) \rightarrow \operatorname{ZnO}(s) + \operatorname{SO}_{2}(g)$ .

La forma de reactor catalítico gassólido de tipo de flujo tubular que se muestra en la Fig. *1-4a* es un sistema heterogéneo muy común. En este caso, el fluido **reac**cionante fluye a través de un lecho de partículas catalíticas relativamente grandes (del orden de un centímetro) que se mantienen en posición estacionaria -de lo que surge el mombre de reactor de *lecho fijo*. Un ejemplo de este caso es la oxidación del bióxido de azufre con partículas de  $V_2O_5$  que se mencionó al principio de este capítulo. Nuevamente, y debido a la naturaleza heterogénea del sistema, puede **exis**tir una diferencia de concentración entre el volumen total del gas y el catalizador debido a la resistencia a la difusión en la superficie de la partícula o cerca de la misma.



(a) Reactor de tanque con (b) Reactor de tanque con agitación con un sistema agitación con un sistema de homogéneo dos faxes (suspensión)

Fig. 1-3 Reactores de tanque con agitación para sistemas homogéneos y heterogéneos.



(a) Reactor catalítico gassólido (lecho fijo) para la oxidación de SO,

(b) Reactor de burbujeo **gas**líquido para la oxidación de los contaminantes del agua

Fig. 1-4 Reactores de flujo tubular de dos fases.

Estas dos ilustraciones implican fases catalíticas sólidas. Pueden existir efectos similares en las reacciones entre dos fases fluidas. Por ejemplo, los reactores para dos fases líquidas son bastante comunes. La Fig. 1-5 muestra un reactor de **alcohila-ción** en el que una òlefina como el butileno reacciona con isobutano para formar isómeros **C**<sub>0</sub> (alcohilatos). Las dos corrientes líquidas de hidrocarburos entran por el fondo del recipiente de flujo tubular donde se dispersan como burbujas en una corriente líquida continua y concurrente de HF que actúa como catalizador. La separación de las fases se presenta en la parte superior del reactor, donde se extrae el producto de **alcohilato**, más ligero, y que se separa de la coniente **más** pesada de HF que se recircula al fondo del reactor. Puesto que la olefina y el isobutano deben entrar en contacto con el ácido para reaccionar, existe una transferencia de masa **in**-terfacial así como cinéticas intrínsecas de la reacción en la fase ácida.

Las reacciones entre un gas y un líquido pueden verificarse en recipientes de tanque o de flujo tubular. Por ejemplo, la hexametilentetramina se prepara burbujeando amoniaco gaseoso a través de una solución acuosa de formaldehído en un tanque con agitación como el que se muestra la Fig. 1-3a. También se pueden usar reactores de tipo de burbujeo. En este sistema, la fase gaseosa se dispersa en forma **de** burbujas en el fondo de un recipiente tubular. Las burbujas se elevan a través de la fase líquida continua que fluye hacia abajo, tal como lo muestra en la Fig. **1-4b**. Uno de los ejemplos de este procedimiento es la eliminación de los contaminantes orgánicos del agua por medio de una oxidación no catalítica con  $O_2$ .





Otro tipo de reactor heterogéneo es la modificación para tres fases en la que los reactantes gaseoso y líquido entran en contacto con partículas de catalizador sólido. El efecto de los procesos físicos sobre la operación del reactor resulta más complejo que en el caso de los sistemas de dos fases, pues la velocidad intrínseca debe acoplarse con los efectos interfaciales de transporte tanto gas-líquido como líquido-sólido. Los sistemas más comunes son las formas de suspensión o lechada y de lecho percolador, que se muestran en la Fig. 1-6. El reactor de suspensión de tres fases es similar 1-3b, excepto que se incorporan dispositivos al de tipo tanque de dos fases de la Fig. para la dispersión del gas reactante en forma de burbujas por el fondo del reactor. El reactor puede operar con régimen continuo como sistema de flujo estable con respecto a las fases gaseosa y líquida, tal como lo ilustra la Fig. 1-6a. Un ejemplo es la polimerización de etileno en una suspensión de partículas de catalizador sólido en un disolvente como el ciclohexano. Por otra parte, se puede agregar una carga fija de líquido al contenido inicial del tanque con agitación para añadir el gas en forma continua; es decir, el reactor es intermitente con respecto a la fase líquida. Por ejemplo, algunas reacciones de hidrogenación, tal como la hidrogenación de aceites en una suspensión de partículas catalíticas de níquel, se llevan a cabo de esta manera.

En el **diseño** de lecho percolador, el gas y el líquido fluyen concurrentemente hacia abajo sobre un lecho fijo de partículas catalíticas contenidas en un reactor tubu*lar*. Este modelo de tres fases se usa mucho para la hidrodesulfurización de fracciones líquidas del petróleo, tal como lo ilustra la Fig. **1-6b**.

Existen muchas modificaciones de las clasificaciones que se han descrito. Por ejemplo, las modificaciones de reactor de tanque con forma tubular son bastante comunes tanto a escala comercial como en el laboratorio. Alguna de estas modificaciones son las que se ilustran en la Fig. 1-7. Tal como ya se **señaló**, se puede lograr



#### Fig. 1-6 Reactores de tres fases.

una gran aproximación a una buena condición de mezclado, usando un reactor tubular con recirculación tal como el que se muestra en la Fig. **1-7***a*. La operación puede ser continua como lo ilustra la figura o, por lotes, cerrando las líneas de alimentación y de producto. El tipo de lecho catalítico fijo puede ser una modificación de la forma tubular de la Fig. **1-4***a* al lograr un flujo radial a **través** del lecho catalítico, tal como lo muestra la Fig. **1-7***c*. En comparación con la forma tubular, este sistema proporciona una menor caída de presión para el mismo volumen catalítico.

En las reacciones catalíticas heterogéneas, el catalizador suele perder su actividad con el tiempo de operación. Si esta disminución es rápida y severa, es aconsejable regenerar el catalizador en forma continua sin suspender la operación. El sistema de lecho fluidificado de la Fig. 1-8 proporciona un método efectivo para lograr este objetivo. Los reactantes entran y salen del reactor, que contiene un lecho fluidificado de partículas catalíticas **pequeñas** (entre 100 y 200 mallas). Parte del catalizador se extrae de manera continua enviándolo hacia otro recipiente tubular que constituye la unidad regeneradora. En este equipo, las partículas catalíticas se regeneran y se regresan al reactor. El cracking catalítico de las fracciones de petróleo se lleva a cabo de esta manera. El catalizador pierde actividad debido a la deposición de carbón proveniente del cracking completo. El carbón se quema con aire en el regenerador para separarlo del catalizador. La actividad de este catalizador regenerado es tan alta, que gran parte del cracking puede verificarse en la línea de transferencia.



Fig. 1-7 Reactores típicos (a) de flujo tubular con recirculación, (b) de flujo **multitubular**, (c) catalítico de flujo radial, (d) de tanque con agitación y enfriamiento interno, (e) de circuito cerrado, (f) con interenfriadores



Fig. 1-8 Sistema de reactor de lecho fluidificado y regenerador para el cracking catalítico de fracciones del petróleo.

El homo de cal es otra forma de reactor heterogéneo gas-sólido. En este sistema no catalítico, la fase gaseosa fluye continuamente a través de un tubo de gran diámetro en una dirección, mientras que las partículas reaccionantes sólidas de  $CaCO_3$  se desplazan en dirección contraria por medio de una rotación lenta del tubo inclinado.

Algunas veces es aconsejable usar un reactor homogéneo de tipo tanque, pero la presión de operación es tan alta que no es factible en la práctica construir recipientes de diámetro tan grande como el que se illustra en la Fig. 1-4. Se pueden lograr las mismas condiciones de mezclado usando un reactor de recirculación pero con un diámetro más **pequeño**. En la Fig. 1-7e se muestra un reactor de "circuito cerrado" de este tipo.

Los requeimientos de transferencia de calor pueden afectar tanto a la forma como al tipo de reactor. Por ejemplo, la eliminación de grandes cantidades de energía en un reactor de tanque puede lograrse introduciendo serpentines enfriadores que suministran el área de transferencia de calor que se requiere (Fig. **1-7d**). Análogamente, en un reactor de flujo tubular, se puede incrementar la velocidad de transferencia de calor aumentando el número de tubos en paralelo y disminuyendo **el** diámetro de los mismos (Fig. 1-76). Este es el tipo de sistema que se usa, por ejemplo, en la oxidación de naftaleno o xilenos a **anhídrico** ftálico, que son reacciones altamente exotérmicas. También es posible modificar un reactor de lecho fijo introduciendo lechos separados e interenfiiadores para disipar el calor producido. El diagrama de la Fig. **1-7***f* muestra un reactor de tres secciones de lecho catalítico con interenfiiadores entre las secciones. Una de las ventajas del reactor de lecho fluidificadores entre las secciones un para reacciones altamente **exo** o endotémicas, el mezdado es suficientemente bueno como para que la temperatura sea casi la misma en todas las partes del reactor; esto es, se obtiene una operación prácticamente **iso**-térmica.

Existen algunas relaciones generales entre la naturaleza física de la mezcla **reac**cionante y el tipo de reactor que se utiliza en la práctica. De esta forma, las reacciones homogéneas en fase gaseosa generalmente se llevan a cabo en reactores de flujo tubular en vez de tipo tanque por lotes o de flujo. Para las reacciones heterogéneas en fase líquida o líquido-sólido, se emplean reactores tanto de tanque como de flujo tubular. Los reactores de tanque en operación por lotes se usan con frecuencia para **produción** a pequeña escala y cuando se requiere flexibilidad en las condiciones de operación (temperatura y presión). Estos sistemas generalmente se utilizan para reactantes y productos costosos, como es el caso en la industria farmacéutica.

En resumen, las tres clasificaciones de reactores que revisten importancia para el **diseño** son: 1) por lotes o continuos 2) de tanque o tubulares y 3) homogéneos o heterogéneos. Discutiremos cada tipo en detalle a partir del Cap. 4. Los reactores homogéneos se estudian en los Caps. 4 a 6 y los heterogéneos en los Caps. 10-14. Puesto que el disefio completo de un reactor comercial requiere la obtención de velocidades intrínsecas, se considerará la interpretación de datos de reactores de laboratorio paralelamente con el disefio de equipo a gran escala. El procedimiento de disefio para reactores homogéneos y heterogéneos es en esencia el mismo y consiste en las siguientes etapas: 1) formulación de las ecuaciones de conservación para el tipo específico de reactor considerado, 2) introducción de las espresiones apropiadas para las velocidades de transferencia de masa y energía pertinentes al sistema, 3) introducción de las expresiones apropiadas para la ecuación de la velocidad de reacción, y 4) resolución de las ecuaciones de conservación para el sistema escala.

Antes del Cap. 4 resulta necesario considerar el terna de la cinética química para aprender a representar la velocidad intrínseca de una reacción química. Esto se lleva a cabo en el Cap. 2. En el Cap. 3 se desarrollan las formas generales de las ecuaciones de conservación, que se aplican a dos de las clasificaciones extremas descritas en esta sección; esto es, a los reactores ideales de flujo tapón y de tanque con agitación.

#### BIBLIOGRAFIA

Hay bastantes libros que tienen por objetivo la aplicación de la cinética al **diseño** de reactores químicos. Cada una de estas obras trata el tema en forma diferente y todas ellas son útiles como lecturas complementarias. A continuación se ofrece una lista parcial:

Aris, Rutherford "Elementary Chemical Reactor Analysis", Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969, [Libro bastante amplio de enfoque analítico, en el cual se presenta primero la teoría de los casos generales, seguida de aplicaciones.]

- Carberry, J. J., "Chemical and Catalytic Reaction Engineering." McGraw-Hill Book Company, New York, 1976. Texto general sobre la ingenienía de las reacciones químicas, que hace hincapié en los reactores heterogéneos.
- Denbigh, K. G, y Tiuner, J. C. R, "Chemical Reactor Theory", 2a. Ed., Cambridge University Press, Cambridge, 1971. Este libro, escrito con mucha claridad, proporciona un excelente tratamiento de los problemas más importantes del diseño de reactores químicos.
- Hill, Charles G., Jr., "An Introduction to Chemical Engineering Kinetics and Reactor Desing", John Wiley and Sons, New York, 1977. Texto que cubre con amplitud tanto las reacciones heterogéneas como las homogéneas enfatizando los modelos matemáticos de diferentes tipos de reactores.
- Kramers, H. y Westerleip, K. R., "Chemical Reactor Design and Operation", Academic Press, Inc., New York, 1963. Tratamiento conciso de temas seleccionados de diseño de reactores, incluyendo optimización y distribuciones de tiempo de residencia.
- Levenspiel, Octave, "Chemical Reactor Engineering", 2a Ed John Wiley Texto muy completo para estudiantes universitarios. Se pone neos y no catalliticos que en los catalíticos. Se tratan en detalle los efectos de la distribución de tiempo de residencia sobre el funcionamiento del reactor.
- Petersen, E. G., "Chemical Reaction Analysis", Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965. Texto más avanzado que presta atención especial a las reacciones catalíticas fluido-sólido y al **diseño** de reactores.

#### PROBLEMAS

1-1. El metanol puede fabricarse por medio de la reacción en fase gaseosa

$$CO + 2H_2 \rightarrow CH_3OH(g)$$

En una composición de alimentación, el gas de equilibrio a 400 K y 1 atm contiene 40 mol de  $H_2$ , y las únicas otras especies presentes son CO y  $CH_1OH$ , A 400 K, la constante de equilibrio es 1.52 y  $\Delta H^0 = -22$  580 cal/(mol de CO).

- (a) Suponiendo un comportamiento ideal del gas, ¿cuál es la composición total del gas de equilibrio?
- (b) Considerando la misma composición de alimentación, **usería** el equilibrio a 500 K y 1 atm superior o inferior a 40% de **H**<sub>2</sub>?
- 1-2. Considerando la reacción de síntesis de amoníaco

$$\frac{3}{2}H_2 + \frac{1}{3}N_2 \rightarrow NH$$
,

**¿cuáles** son el cambio de energía libre de estado normal y la constante de equilibrio a 773 K? Los datos de capacidad calorífica son como sigue  $(T = \text{grados Kelvin (K)}, c_p = \text{cal/(mol g)})$ 

> N;:  $c_p = 6.83 + 090 \text{ x} \quad 10^{-3} \text{T}$ H<sub>2</sub>:  $c_p = 6.52 + 0.78 \text{ x} \quad 10^{-3} \text{T}$ NH,:  $c_p = 7.11 + 6.0 \text{ x} \quad 10^{-3} \text{T}$

1-3. Usando el valor de K del Prob. 1-2, **cual** sera la conversión máxima de nitrógeno en amoníaco a 773 K y 250 atm con un gas de alimentación que contiene solamente Hz y  $N_2$  con una relación molar de **3?** Cual sería la conversión para una alimentación de 4.5 mol de  $H_2$  por mol de  $N_2$ ? Estime las fugacidades a 250 atm y 500 K usando una correlación adecuada de las fugacidades de los componentes puros (véanse textos de propiedades termodinámicas como el de Smith y **Van** Ness). Suponga que la mezcla gaseosa tiene un comportamiento ideal.

14. El vapor de agua se disocia 1.85 mol % a 2000 °C y 1 atm de presión total en el equilibrio. Calcule la disociación de equilibrio a 25 °C y 1 atm.

Considere un reactor en el que se verifican dos reacciones en fase gaseosa:

1. 
$$A + B \rightarrow C + D$$

1-5.

2.  $A + C \rightarrow 2E$ A la temperatura de reacción,  $K_{p1} = 2.667$  y  $K_{p2} = 3.200$ . La presión total es 10 atm y la alimentación al reactor tiene una composición de 2 moles de A y 1 mol de B. Calcule la composición del **efluente** del reactor al obtenerse el equilibrio con respecto a ambas reacciones. 16. Calcule la presión de disociación del **Ag<sub>2</sub>O(s)** a 200 °**C**. Use los siguientes datos:

$$AH'' = 6950 \text{ cal/ mol g} \quad a \quad 25^{\circ}C$$

$$\Delta F^{\circ} = 2230 \text{ cal/mol g} \quad para Ag(s)$$

$$C_{p} = \frac{5.60 + 1.5 \times 10^{-3}T}{6.50 + 1.0 \times 10^{-3}T} \quad para Ag(s)$$

donde T está en grados Kelvin.

17. Suponiendo que el valor de  $K_p$  para la reacción de la síntesis del metano1 sea 9.28 x 10<sup>-1</sup> a 1 atm de presión y 300 °C, ¿cuáles serán los valores<sup>17</sup> numéricos de las siguientes cantidades a esta temperatura?

(a) K a p, = 1 atm
(b) K, ap, = 10 atm
(c) K, ap, = 50 atm
(d) K a 10 y 50 atm de presión total
(e) K, a 1, 10, y 50 atm de presión total

18. Newton y **Dodge<sup>11</sup>** y Von Wettberg y **Dodge<sup>11</sup>** midieron la **composición** de mezclas de equilibrio de CO,  $H_2$  y **CH<sub>3</sub>OH** en la síntesis de metanol. Calcule el valor de Ky el de  $\Delta F^o$  a 309 °C a partir de los siguientes datos tomados de sus investigaciones:

$$t = 309 \text{ °C}$$
  
 $p, = 170 \text{ atm}$ 

El análisis de gases en equilibrio en mol 🦔 es

Hidrógeno = 
$$60.9$$
  
Monóxido de carbono =  $13.5$   
Metano1 =  $21.3$   
Inertes =  $4.3$   
Total =  $100.0$ 

19. Los resultados completos referentes al Prob. 1-8 son como sigue:

| $1000/T, K^{-1}$ | 1.66  | 1.73  | 1.72        | 1.75         | 182   | 181          | 182          | 182   |  |
|------------------|-------|-------|-------------|--------------|-------|--------------|--------------|-------|--|
| log K            | -4.15 | 3.75  | <b></b> 365 | <b>—</b> 330 | -3.10 | <b>—</b> 320 | <b>=</b> 300 | -2.90 |  |
| $1000/T^{-1}$    | 183   | 188   | 191         | 191          | 192   | 205          | 205          | 205   |  |
| log K            | -2.95 | -2.60 | -2.70       | - 300        | - 230 | - 230        | -2.15        | -2.35 |  |

**11 Use** correlaciones obtenidas de textos de termodinámica para estimar las fugacidades que se requieren para los componentes puros.

<sup>&</sup>lt;sup>11</sup> J. Am. Chem, Soc., 56, 1287 (1934). <sup>15</sup> Ind. Eng. Chem., 22, 1040 (1930).

#### 58 Ingeniería de la cinética química

A partir de esta información, determine la relación mas apropiada entre K y T, expresándola en la siguiente forma:

$$\ln K = A \frac{1}{T} + B$$

1-10 La determinación de K en el Prob. 1-8 se basa en la medición directa de composiciones de equilibrio. Use los siguientes datos calorimétricos y la tercera ley para preparar una gráfica de log K en función de 1/T para la **sintesis** de metanol. Incluya un intervalo de temperatura de 298 a 800 K. Compare la gráfica con el resultado obtenido en el Prob. 1-9.

La entropía del CO gaseoso a 298.16 K en estado de gas ideal a 1 atm es 47.30 **cal/(mol** g)(K). El valor para el hidrógeno es 31.21. El calor de vaporización del metano1 a 298.16 K es 8 943.7 **cal/mol** g, y la presión de vapor a 298.16 K es 0.1632 atm. El calor de formación del **CH<sub>1</sub>OH** en estado de gas ideal a 1 atm es 48 490 **cal/mol** g. Los datos de calor específico y de calor de transición para el metano1 **a** bajas temperaturas son como sigue:

| <i>T</i> , K           | 18.80  | 21.55  | 24.43    | 27.25  | 30.72 34.3 | 33 37.64 | 40.87  | 43.93  |        |
|------------------------|--------|--------|----------|--------|------------|----------|--------|--------|--------|
| C,, cal<br>(mol g)(°C) | 1.109  | 1512   | 1959     | 2.292  | 2.829      | 3.437    | 3.962  | 4.421  | 4.840  |
|                        | 48.07  | 56.03  | 59.53    | 63.29  | 69.95      | 73.95    | 77.61  | 81.48  | 85.52  |
|                        | 5.404  | 6.425  | 6.845    | 7.252  | 8001       | 8.392    | 8.735  | 9001   | 9.295  |
|                        | 89.29  | 93.18  | 97.22    | 111.14 | 111.82     | 11797    | 118.79 | 121.44 | 125.07 |
|                        | 9.693  | 9,939  | 1023     | 11.23  | 11.48      | 11.64    | 11.64  | 11.74  | 1218   |
|                        | 12938  | 13371  | 147.86   | 152.29 | 153.98     | 164.14   | 166.23 | 167.75 | 181.09 |
|                        | 1228   | 1264   | 1297     | 1369   | 1412       | 1129     | 11.63  | 11.68  | 1660   |
| Т. К                   | 185.10 | 189.06 | 196.77 . | 210.34 | 235.84     | 256.34   | 273.58 | 285.15 | 292.01 |
| $\epsilon_p$           | 1667   | 1677   | 1678     | 1697   | 1741       | 1770     | 18.30  | 1870   | 19,11  |

Los cristales de metano1 presentan una transición de fase a 157.4 K para la cual AH = 154.3 cal/molg. El punto de fusión es 175.22 K y el calor de fusión es 757.0 cal/molg. Los datos de calor específico a temperaturas superiores a 298.16 K son como sigue:

| Т, К                                 |          | 298.16  | 300   | 400   | 500   | 600  | 700   | 800 |
|--------------------------------------|----------|---------|-------|-------|-------|------|-------|-----|
| c,, CH3OH, cal/(r                    | nol g)(° | C) 10.8 | 10.8  | 127   | 145   | 163  | 178   | 192 |
| т. ° <b>С</b>                        | 25       | 100     | 200   | 300   | 400   | 500  | 600   |     |
| с <sub>р</sub> . СО, cal/(g)(°C)     | 0.249    | 0.250   | 0.253 | 0.258 | 0.264 | 0271 | 0.276 |     |
| $c_p$ , H <sub>2</sub> , cal/(g)(°C) | 342      | 345     | 347   | 347   | 348   | 3.50 | 353   |     |

**1-11.** La piedra caliza (CaCO<sub>3</sub>) se descompone al calentar produciendo cal (CaO) y bióxido de carbono. Determine la temperatura a la cual la piedra caliza desarrolla una presión de descomposición de 1 atm.

١

ŝ

1.4

H. La energía libre para las mezclas en fase gaseosa de n-pentano y neopentano a 1 atm y 400 K está dada por la expresión

$$F = 9\,600\,y_1 + 8\,990\,y_2 + 800(y_1\,\ln\,y_1 + y_2 \ln\,y_2)$$

donde los subíndices 1 y 2 se refieren al n-pentano y al neopentano, respectivamente, y F es la energía libre en cal/(mol g de la mezcla).

(a) Determine la composición de equilibrio a 1 atm y 400 K para la reacción de isomerización entre el **n-C**, y el **neo-C**.

(b) Trace una curva de F en función de  $y_1$  para la mezcla a 1 atm y 400 K y señale la localización del punto de equilibrio de la *reacción* determinado en (u).

El butadieno se produce por medio de la deshidrogenación catalítica en fase gaseosa del 1-buteno:

#### $C_4H_8 \rightarrow C_4H_6 + H_2$

Para reducir al mínimo las reacciones secundarias y mantener el nivel de temperatura, la alimentación de buteno se mezcla con vapor de alta temperatura antes de entrar al reactor. Estime la temperatura del **efluente** del reactor, cuando se alcanza el equilibrio de la reacción, que se requiere para convertir 30% del buteno en butadieno. La presión el reactor es 2 atm y la alimentación consiste en 12 moles de vapor por mol de buteno. Los dato de energía libre,  $\Delta F^0$  en **cal/(mol** g) son:

|                 | 600K          | 700K   | 800 K 9 0 0 K |        |  |  |
|-----------------|---------------|--------|---------------|--------|--|--|
| 1.3-butadieno   | 46780         | 50 600 | 54 480        | 58 400 |  |  |
| 1-buteno 36 070 | 42 <b>070</b> | 42 730 | 49 450        | 56 250 |  |  |

El cianuro de hidrógeno puede formarse en cantidades pequeñas por medio de la reacción acetileno-nitrógeno:

#### $N_2(g) + C_2H_2(g) \rightarrow 2HCN(g)$

¿Cuál es la composición del efluente del reactor en equilibrio considerando una alimentación estequiométrica? Use dos condiciones de operación:

(a) 1 atm y 573 K (b) 200 atm y 573 K

A 573 K, ΔF<sup>a</sup> = 7190 cal/(mol de C<sub>2</sub>H<sub>2</sub>).

# 2

## CINETICA QUIMICA

En este capítulo deseamos aprender como formular expresiones para la velocidad intínseca de las reactiones químicas. Esto significa que debemos estudiar cuáles son las variables importantes y cómo afectan a la velocidad. En la actualidad todavía no es posible predecir velocidades por lo que resulta necesario medirlas. Para hacer esto es indispensable usar un reactor, preferiblemente a pequeña escala, como unidad de laboratorio. Las velocidades no pueden medirse directamente sino que se obtienen por medio de la interpretación de datos medidos en un reactor. Por lo general, estos datos consisten en concentraciones de reactantes y productos, y los resultados específicos dependen del tipo de reactor usado. Esto se debe a que las concentraciones suelen ser afectadas por procesos físicos tales como la convección y la propia reacción. El análisis de datos de reactor para obtener la velocidad intrínseca es, en esencia, el proceso inverso al procedimiento de diseño para un reactor a escala comercial. Sin embargo, el problema se simplifica debido a que el reactor a pequeña escala puede construirse de tal manera que se obtengan la velocidad intrínseca en forma precisa y fácil a partir de las mediciones de concentración. Es decir, podemos eliminar la mayoría de las complejidades que se presentan a causa del acoplamiento de los procesos físicos con la cinética intrínseca, por medio de un diseño adecuado del reactor de laboratorio. Todas estas complejidades pueden ser eliminadas cuando 1) la concentración de un reactante o producto y la temperatura son iguales en todos los puntos de la mezcla reaccionante, y 2) las concentraciones sólo cambian a causa de la reacción. El primer requerimiento se satisface usando un reactor homogéneo por lotes con un buen mezdado (como el de tanque con agitación que se ilustra en la Fig. 1-3a). El segundo requerimiento se presenta debido a que la concentración de un reactante puede cambiar no sólo debido a la verificación de la reacción, sino también por medio de un cambio de volumen. El volumen será constante cuando también lo sean la temperatura, la presión y, en el caso de las reacciones gaseosas, las moles de mezcla reaccionante. En este capítulo nos interesan principalmente las variables que afectan a la velocidad intrínseca. Por el momento, no resulta aconsejable

complicar el procedimiento de la obtención de la ecuación para la velocidad intrínseca incluyendo los procesos físicos. Por consiguiente, se **supondrá** que se satisfacen estos dos requerimientos; esto es, se consideran únicamente reactores por lotes con buen mezclado y a volumen constante. Después, en **los** Caps. **3**, **4** y 6 para reacciones homogéneas y 10 y ll para las reacciones heterogéneas, consideraremos cómo obtener velocidades intrínsecas a partir de datos de reactor cuando no se satisfacen estos requerimientos.

#### 2-1 Velocidades de reacciones homogéneas

La velocidad de una reacción homogénea se define como el cambio del número de moles (debido a la reacción) de un reactante o un producto, por unidad de tiempo y unidad de volumen de la mezcla reaccionante. Con las *restricciones* mencionadas en el párrafo anterior, la velocidad de *producción* de una especie *i* puede expresarse como

$$\mathbf{r}_i = \frac{1}{V} \frac{dn_i}{dt} = \frac{dC_i}{dt} \tag{2-1}$$

donde  $n_i$  y  $C_i$  son el número de moles y la concentración de la especie química i. Si i es un producto,  $r_i$  sera positiva; para un reactante,  $r_i$  es **negativa.**<sup>1</sup> Además, para una misma reacción, el valor numérico de la velocidad varía dependiendo de qué producto o reactante se use (a menos que los coeficientes estequiométricos sean todos iguales). Esta dependencia puede eliminarse para expresar el curso de una reacción por medio de una variable,  $\xi$ , el grado de verificación de la reacción. Considérese la reacción general homogénea

$$aA + bB \rightarrow cC + dD$$
 (2-2)

y supóngase que inicialmente hay  $(n_A)_0$  moles de A,  $(n_B)_0$  moles de B, etc. La velocidad de cambio de las moles de una especie química está relacionada con la de cualquier otra por medio de la estequiometría de la reacción. De esta forma

$$\frac{1}{a}\frac{du}{dt} - \frac{1}{b}\frac{du}{dt} = \frac{1}{c}\frac{du}{dt} = \frac{1}{d}\frac{du}{dt} = \frac{1}{d}\frac{du}{dt}$$
(2-3)

definiendo el grado de verificación de la reacción como

$$d\xi = \frac{-dn_A}{a} = \frac{-dn_B}{b} = \frac{dn_c}{c} = \frac{dn_i}{d} = \frac{dn_i}{v_i}$$
(2-4)

donde  $v_i$  es el coeficiente estequiométrico de la especie *i*. Si *i* se refiere a un reactante,  $v_i$  es negativa y para un producto es positiva.

<sup>1</sup> En contraste, la velocidad de *desaparición* de un reactante tal manera que resulte positiva [véase la Ec. (2-9)].

Sustituyendo el valor de dn de la Ec. (2-4) en la Ec. (2-1) se obtiene una expresión para la velocidad en términos de  $\xi$ :

 $\mathbf{r}_i = \frac{v_i}{V} \frac{d\xi}{dt}$ 

o bien

$$\frac{\mathbf{r}_i}{\mathbf{v}_i} = \frac{1}{V} \frac{d\xi}{dt} \tag{2-5}$$

Este resultado muestra que la **velocidad** dividida entre el número estequiométrico es independiente de la selección del reactante o producto para i. En base a la **Ec. (2-1)**, esta relación  $\mathbf{r}_i/\mathbf{v}_i$  puede expresarse en términos de concentración como

$$\frac{\mathbf{r}_i}{\mathbf{v}_i} = \frac{1}{\mathbf{v}_i} \frac{dC_i}{dt} \tag{2-5a}$$

La **Ec.** (2-5*a*) es una forma útil para mantenet consistencia en la comparación de valores de velocidad, pues  $\mathbf{r}_i/\mathbf{v}_i$  es igual para todas las especies químicas participantes en la reacción.

El grado de verificación de la reacción está muy relacionado con la *conversión* x. Esta última cantidad se define como la fracción de reactante que reacciona. De esta manera, la conversión de la especie A para la reacción (2-2) es

$$x_A = \frac{(n_A)_0 - (n_A)}{n_{A_0}} \tag{2-6}$$

Si la **Ec**. (2-4) se integra desde  $\xi = 0$ ,  $n_i = (n_i)_0$ 

$$n_i - (n_i)_0 = v_i(\xi - 0) = v_i\xi$$
(2-7)

Aplicando la Ec. (2-7) al reactante  $A_{1}$ ,

$$n_A - (n_A)_0 = -a\xi$$

sustituyendo  $n_A - (n_A)_0$  en la Ec. (2-6) se obtiene

$$x_A = \frac{a\xi}{(n_A)_0} \tag{2-8}$$

Notese que  $\xi$  tiene unidades de moles, mientras que la conversión x es adimensional.

Se considera que  $\mathbf{r}_1$  es una propiedad de un sistema reaccionante. No es una propiedad en el sentido de que sea una función del estado de equilibrio del sistema, sino que, para una reacción homogénea especifica, es una función de la temperatura y la **concentración** de los reactantes y los productos. En las **Secs**, 2-2 a 2-8 se estudia la naturaleza de la función r, =  $f(C_1, T)$ . **Después** se usan estos resultados en el resto del capítulo para formular ecuaciones de la velocidad intrínseca a partir de datos experimentales. Esto se hace para varios tipos de reacciones simples y complejas (reacciones múltiples). En todos los casos, los datos corresponden a condiciones que hacen aplicable la **Ec**. (2-1).

#### 2-2 Fundamentos de ecuaciones de velocidad-Efecto de la concentración

Los primeros investigadores de la cinética encontraron que existen relaciones simples entre las velocidades de reacción y las concentraciones de reactantes. De esta forma, Berthelot y St. **Gilles<sup>4</sup>** descubrieron que la velocidad de esterificación era proporcional a la primera potencia de la concentración de etanol y a la primera potencia de la concentración de etanol y a la primera potencia de la concentración de activo. Se dice entonces que la velocidad es de *primer orden* con respecto a cada reactante. En téminos generales, supóngase que la velocidad de desaparición de *A* por medio de la reacción *irreversible* 

$$aA + bB \rightarrow cC + dD$$

в

$$\mathbf{r}_{A} = -\frac{dC_{A}}{dt} = kC_{A}^{\alpha}C_{B^{\alpha}}^{\beta}$$
(2-9)

Entonces,  $\alpha$  es el orden de la reacción con respecto a A, y  $\beta$  es el orden con respecto a **B**. La constante de proporcionalidad k, llamada constante de la velocidad de **reac** ción, es independiente de las concentraciones. En la **Sec**. 2-5 se discute su **interrela**ción con la temperatura.

No es necesario que el orden y la estequiometría concuerden; esto es,  $\alpha$  no es necesariamente igual a  $\alpha$  y  $\beta$  a b. Por ejemplo, se ha determinado que la velocidad de la reacción<sup>3</sup>

$$2N0 + 2H_2 \rightarrow N_2 + 2H_2O$$
 (2-10)

es de primer orden con respecto al hidrógeno  $(\beta = 1)$  y de segundo orden con respecto al NO  $(\alpha = 2)$ , mientras que la estequiometría requeriría que la velocidad fuera de segundo orden con respecto a ambos reactantes. A medida que se han acumulado estudios cinéticos para muchos tipos de reacciones, se ha hecho cada vez más evidente que la formación de productos a partir de los reactantes originales, generalmente tiene lugar por medio de una serie de etapas relativamente simples. Esta es en realidad la explicación de la diferencia entre el orden y los coeficientes estequiométricos. Cada etapa consiste en una sola reacción en la que **sólo** se rompen o se forman uno o dos enlaces **atómicos**. Por lo general, las velocidades de las etapas individuales son diferentes, y la velocidad de la **reacción** total **esta** determinada por la más lenta de dichas etapas. El **meconismo** de una **reacción** es la secuencia de etapas que describe

<sup>&</sup>lt;sup>2</sup> M. Bathaht y L. P. St. Gilles, Ann. Phys., 63, 385 (1862).

<sup>&</sup>lt;sup>3</sup>C. N Hinshelwood y T E Green, J. Chem. Soc., 129, 730 (1926).

la formación de los productos finales a partir de los reactantes originales. Cuando se conoce el mecanismo, casi siempre es posible evaluar una ecuación de velocidad como la (2-9) y, por tanto, el orden de la reacción. Supóngase como ejemplo que la Ec. (2-10) se verifica en dos etapas:

$$2NO + H_2 \rightarrow N_2 + H_2O_2 \qquad (2-11)$$

$$H_2O_2 + H_2 \rightarrow 2H_2O$$
 (2-12)

Si la reacción (2-12) es rápida con respecto a la (2-1 1), la velocidad estará determinada por la primera etapa. Esto explica la dependencia observada con respecto a la concentración de hidrógeno, que es de primer orden. Las etapas individuales que constituyen el mecanismo de reacción reciben el nombre de reacciones elementales. En una etapa elemental, las moléculas reaccicpan exactamente igual que en la forma descrita por la ecuación. Por ejemplo, la reacción (2-12) se verifica cuando una molécula de peróxido de hidrógeno reacciona con una molécula de hidrógeno. La velocidad de cada una de estas etapas generalmente concuerda con la estequiometría de la reacción de dicha etapa. Es decir, en la mayoría de las reacciones elementales existe una concordancia entre el orden y la estequiometría. De esta forma, podemos refinar nuestro concepto de mecanismo diciendo que el mecanismo es la secuencia de etapas elementales que determinan la reacción total.

El termino molecularidad se usa en la cinética para designar el número de moléculas involucradas en una reacción elemental. La etapa elemental más común es una reacción bimolecular, por ejemplo, la Ec. (2-12). Unas cuantas etapas elementales son unimoleculares (la etapa 1 de la descomposición del N2O descrita en la Sec. 2-3) o termonucleares (Ec. 2-11). Si en una reacción participan cuatro o más especies, camás etapas elementales. Nótese que, si siempre representa una combinación de dos o por lo general, una reacción unimolecular suele ser un proceso de primer orden y una reacción bimolecular casi siempre es un proceso de segundo orden.

#### ECUACIONES DE VELOCIDAD A PARTIR DE MECANISMOS PROPUESTOS

Una vez aceptado el concepto de que casi todas las reacciones reales se verifican por medio de una secuencia de etapas elementales, ¿cómo se podrá desarrollar una ecuación de velocidad a partir de esta secuencia? Este problema consiste de dos partes: 1) **¿Cómo** se selecciona la secuencia de etapas elementales, esto es, cómo se selecciona el mecanismo? 2) ¿Cómo se desarrolla una ecuación de velocidad para la reacción total a partir de este mecanismo? La primera parte debe tomar en consideración el hecho de que la información experimental disponible puede tener poca o ninguna relación con la identificación o concentración de las especies químicas intermedias. Si sólo se dispone de información relativa a los reactantes y productos de la reacción total, no existe un procedimiento para deducir un mecanismo específico. Sin embargo, los datos que se han ido acumulando al correr de los **años** proporcionan al investigador cinético algunas reglas prácticas que se pueden aplicar para

proponer un mecanismo de reacción. Edwards, Greene y Ross<sup>4</sup> han propuesto un conjunto de reglas de este tipo. Algunas son bastante simples, tal como la que señala necesidad de que las etapas elementales sean suficientes para explicar la formación de todos los productos observados, mientras que otras son menos obvias. La selección del mecanismo es una de las actividades del investigador cinético, no del ingeniero, por lo que no estudiaremos este aspecto en este libro. No obstante, tal como suede en la Sec. 2-3, de vez en cuando usaremos un mecanismo para desarrollar una ecuación de velocidad. A este respecto, conviene hacer hincapié en dos puntos: 1) en los estudios experimentales de cinética debe obtenerse tanta información como sea posible acerca de los intermediarios de la reacción y de los productos de la misma, incluyendo el efecto de los cambios de concentración sobre la reacción total, y 2) cuando se trata de varias etapas, puede existir más de un mecanismo que conduzca a la misma ecuación total de velocidad, esto es, a una ecuación de velocidad congruente con los resultados experimentales basados en las concentraciones de los reactântes y productos de la reacción general. Resulta evidente que la identificación del mecanismo correcto requiere información muy precisa sobre las especies intermedias.

Después de seleccionar el mecanismo, la segunda parte del problema consiste en formular una ecuación de velocidad en términos de las concentraciones de los **reac**tantes y los productos de la reacción general. En principio, esto puede lograse eliminando las concentraciones de las especies intermedias combinando las ecuaciones de velocidad (expresadas en la forma de la **Ec.** 2-9) escritas para cada etapa elemental. Sin embargo, y a excepción de los mecanismos más simples, esto conduce a ecuaciones tan complejas que resultan inútiles para el **diseño** de reactores. Por consiguiente, el **análisis** suele llevarse a cabo en base a ciertas suposiciones. Primero, se puede lograr una simplificación muy considerable considerando que las reacciones son irreversibles. Esto siempre es cierto durante las etapas iniciales de la reacción, pues existen pocas moléculas de productos. Además, también es cierto en cualquier momento cuando la constante de equilibrio es alta. Por otra parte, se establece una cualquiera de dos hipótesis que se discuten en las dos siguientes secciones.

### 2-3 Etapa determinante de la velocidad

Si una de las etapas elementales de un mecanismo se verifica a una velocidad mucho menor que las otras, dicha etapa determinará la velocidad de la reacción total. Esta suposición fue la que se usó para explicar la cinética de la reacción óxido **nitrico**-hidrógeno, **Ec.** (2-10).

Considérese un segundo ejemplo, la descomposición del N2O;

$$2N_2O_3 \rightarrow 4NO_2 + 0, \qquad (2.13)$$

**Ogg<sup>5</sup> determinó** que la velocidad es de primer orden con respecto al **N<sub>2</sub>O<sub>5</sub>**. La reacción no parece ser de tipo elemental y probablemente se verifica por medio del siguiente mecanismo de tres etapas, con la primera de ellas ocurriendo dos veces:

<sup>&</sup>lt;sup>4</sup> J. 0. Edwards, E. F. Greene, y J. Ross, Chem. Education, 45, 381 (1968).

<sup>&</sup>lt;sup>5</sup> R. A. Ogg, Jr., J. Chem. Phys., 15, 337, 613 (1947).

1. 
$$N_2O_5 \stackrel{k_1}{\underset{k_1'}{\leftarrow}} NO_2 + NO,$$
  
2.  $NO_2 + NO_3 \stackrel{k_2}{\rightarrow} NO + O_2 + NO_2$  (lenta)  
3.  $NO + NO_3 \stackrel{k_3}{\rightarrow} 2NO_2$ 

donde la primera etapa representa una descomposición reversible con una constante de velocidad directa  $k_1$  y una constante de velocidad inversa  $k_1$ . En la segunda etapa, el NO, no reacciona sino que afecta a la descomposición del NO, Si la segunda etapa es inherentemente mucho más lenta que las otras, la velocidad está dada por

$$\frac{1}{2} \frac{dC_{N_2O_5}}{dt} - \frac{dC_{O_2}}{dt} = \mathbf{r} = k_2(C_{NO_2})(C_{NO_3})$$
(2-14)

La concentración del NO no aparece en esta ecuación de velocidad debido a que la tercera etapa es rápida con respecto a la segunda. Puesto que la primera etapa también es rápida y reversible, podemos relacionar las concentraciones de las tres especies por medio de una ecuación de equilibrio:

$$K_1 = \frac{C_{NO_2} C_{NO_3}}{C_{N_2O_5}}$$
(A)

donde  $K_1$  es la constante de equilibrio de esta etapa. Usando la  $(C_{NO2})(C_{NO3})$ , la expresión de velocidad puede escribirse como

$$\mathbf{r} = (k_2 K_1) C_{N_2 O_5} \tag{B}$$

Aplicando la suposición de que la cinética está controlada por una de las etapas del mecanismo, la velocidad es de primer orden con respecto al  $N_2O_5$ , lo que concuerda con los resultados observados. Nótese que sería enóneo suponer que la **Ec.** (2-13) es una etapa elemental, aun cuando los números estequiométricos se dividieran entre 2 para **senalar** que reacciona una sola molécula de  $N_2O_5$ . Este resultado concuerda con la observación de que la reacción tiene una dependencia de primer orden con **C**\_N2O5, pero sería incorrecta. La molécula de  $N_2O_5$  es demasiado compleja y contiene muchos enlaces para esperar que se descomponga totalmente con formación de moléculas simples como NO y  $O_2$  en una sola etapa.

En el Cap. 9 usaremos nuevamente la suposición de una etapa determinante de la velocidad en un mecanismo.

#### 2-4 Aproximación del estado estacionario

En el mecanismo de tres etapas propuesto en la sección anterior para la descomposición del **N<sub>2</sub>O<sub>5</sub>**, los intermediarios son NO, y NO. Se supuso que estas especies desaparecen **rápidamente** de acuerdo a la tercera etapa. Bajo estas condiciones, la concentración de cualquiera de estas especies no puede incrementarse a un nivel **sig**- nificativo a medida que se verifica la reacción. Puesto que los valores iniciales son cero, se puede decir lógicamente que la siguiente aproximación es válida:

22

$$\frac{dC_{NO_3}}{dt} = 0 \tag{A}$$

y lo mismo sucede con

$$\frac{dC_{NO}}{dt} = 0 \tag{B}$$

Estas expresiones constituyen otro procedimiento (como alternativa de la Sec. 2-3) para deducir una ecuación de velocidad para la descomposición del  $N_2O_5$ . Observando que el  $NO_3$  se produce y se consume en la etapa reversible 1, y se consume en las etapas 2 y 3, la **Ec.** (A) puede expresarse como sigue:

$$\frac{dC_{NO_3}}{dt} = 0 = k_1 C_{N_2O_3} = k_1' C_{NO_2} C_{NO_3} = k_2 C_{NO_3} C_{NO_3} = k_3 C_{NO} C_{NO_3}$$
(C)

Esta ecuación puede resolverse en términos de la concentración del producto intermedio NO,

$$C_{\rm NO_3} = \frac{k_1 C_{\rm N_2O_5}}{k_2 C_{\rm NO_2} + k_3 C_{\rm NO} + k_1' C_{\rm NO_2}} \tag{D}$$

Aplicando la Ec. (B) de la misma manera,

$$\frac{dC_{NO}}{dt} = 0 = k_2 C_{NO_2} C_{NO_3} - k_3 C_{NO} C_{NO_3}$$

o bien,

$$C_{\rm NO} = \frac{k_2}{k_3} C_{\rm NO_2}$$
(E)

Este resultado nos da  $C_{NO}$  en términos de la concentración del producto final NO,. La **Ec**. (E) puede usarse para  $C_{NO}$  en la **Ec**. (D) con el objeto de obtener una expresión para  $C_{NO_3}$  en términos de las concentraciones de los reactares y los productos finales:

$$C_{\rm NO_3} = \frac{k_1 C_{\rm N_2O_5}}{(2k_2 + k_1')C_{\rm NO_2}}$$
(F)

Finalmente, las Ecs. (E) y (F) se sustituyen en **la Ec.** (2-14) para obtener la ecuación de velocidad

$$-\frac{1}{2}\frac{dC_{N_2O_2}}{dt} = \mathbf{r} = \frac{k_1k_2}{2k_2 + k_1'}C_{N_2O_5}$$
(G)

Este resultado también concuerda con la cinética de primer orden que se observa experimentalmente. La constante de velocidad de la **Ec.** (G) es diferente a la de la **Ec.** (B) de la **Sec.** 2-3. Sin embargo, y puesto que se supone que el mecanismo es lento,  $k_1 = \frac{k_1}{2}$ . Además, si la etapa 1 es rápida y reversible, su velocidad neta, aun no siendo cero, será muy inferior a la velocidad de la dirección directa o inversa. Por tanto, las velocidades directa e inversa de la etapa 1 pueden igualarse con poco error:

$$k_1 C_{N_2O_5} = k_1' C_{NO_2} C_{NO_3} \tag{H}$$

Al comparar con la Ec. (A) de la Sec. 2-3 se obtiene

$$K_1 = \frac{k_1}{k_1'}$$
(2-15)

para esta etapa *elemental*. Con estas dos modificaciones, la **Ec.** (G) resulta idéntica a la **Ec.** (B) de la **Sec.** 2-3:

$$\mathbf{r} = \frac{k_1 k_2}{k'_1} C_{N_2 O_5} = k_2 K_1 C_{N_2 O_5}$$

Tanto el método de *etapa determinante* como el de *aproximación del estado estacionario*, conducen a la misma expresión para la velocidad total.

Tal como era de esperarse, la aproximación de estado estacionario resulta más precisa cuando las especies intermedias son mas reactivas; esto es, a medida que aumenta la constante de velocidad de la destrucción de las especies intermedias. La validez de la aproximación como una función del valor de la constante de velocidad se ilustra en el Prob. 2-26. Estas constantes de velocidad altas son características de la mayoría de los sistemas reaccionantes de radicales libres y, de hecho, este método se desarrolló **originalmente**<sup>6</sup> para este tipo de sistemas. En la **Sec.** 2-8 se estudian las reacciones de radicales libres.

La Ec. (2-15), que relaciona las constantes de velocidad y la constante de equilibrio termodinámico, es una conclusión muy importante para las reacciones reversibles. En la Sec. 2-7 se consideran sus aplicaciones y limitaciones.

#### 25 Efecto de la temperatura-Ecuación de Anhenius

Hasta este punto, sólo se ha considerado la influencia de la concentración sobre la velocidad. La constante especifica de velocidad **k** de la **Ec.** (2-9) incluye los efectos de todas las demás variables. La más importante de ellas es la temperatura, pero existen otras que también son relevantes. Por ejemplo, una reacción puede ser primordialmente homogénea pero puede tener efectos de pared o superficiales apreciables. En **tales** casos, **k** puede variar con la naturaleza y extensión de la superficie.

M. Bodenstein, Z. Physik Chem. 85, 329 (1913); J. A. Christiansen, Kgl. Danske Videnskab. Selskab., Mat. Fys. Medd, 1, 14 (1919); K. F. Herzfeld, Ann, Physik. 59, 635 (1919); M. Polanyi, Z. Elektrochem. 26, 50 (1920).

Una reacción puede ser homogénea y requerir un catalizador miscible. Un ejemplo es la reacción de inversión de los azúcares, donde un ácido actúa como catalizador. En estos casos, k puede depender de la concentración y la naturaleza de la sustancia catalítica. Cuando se conoce el efecto de la concentración del catalizador, es preferible incluir dicha concentración en la **Ec.(2-9)**, de tal manera que k sea independente de todas las concentraciones.

La relación entre  $\boldsymbol{k}$  y la temperatura para un proceso elemental obedece a la ecuación de Arrhenius

$$k = Ae^{-E/R_gT}$$
(2-16)

donde A es el factor de frecuencia (o preexponencial) y E es la energía de activación. Combinando las Ecs. (2-16) y (2-9) se obtiene

$$-\frac{dC_s}{dt} = \mathbf{A}e^{-E/R_s T} C^a_A C^\beta_B \tag{2-17}$$

Esto proporciona una descripción de la velocidad en términos de variables que se pueden medir, es decir, la concentración y la temperatura. En un sentido estricto, está limitada a un proceso elemental, pues la ecuación de Arrhenius impone esta restricción. Sin embargo, el efecto exponencial de la temperatura suele representar con bastante precisión los datos de velocidad experimentales para una reacción total, incluso cuando la energía de activación no esté definida muy claramente y pueda ser una combinación de valores de E para'diversas etapas elementales.

La expresión de Arrhenius se obtuvo originalmente' a partir de consideraciones temodinánicas. Para una reacción elemental cuyas velocidades sean suficientemente rápidas y así alcanzar un equilibrio dinámico, la *ecuación de van* 't Hoff enuncia **que** 

$$\frac{d\ln K}{dT} = \frac{\text{AH}^{\prime}}{R_a T^2} \tag{2-18}$$

Supóngase que la reacción es

$$A + B \underset{k_{1'}}{\stackrel{k_2}{\Rightarrow}} C \tag{2-19}$$

con  $k_2$  y  $k_1$  siendo las constantes de velocidad directa e inversa. Entonces, en base a la **Ec.(2-15)**, las constantes de equilibrio y de velocidad se relacionan entre sí por medio de la expressión

$$K = \frac{k_2}{k_1'}$$

Usando este resultado en la Ec. (2-18) se obtiene

<sup>7</sup> S. Arrhenius, Z. Physik Chem. 4, 226 (1889).

Cinética química 71

$$\frac{d(\ln K_2)}{dT} \frac{d(\ln k_1')}{dT} \stackrel{A}{=} \frac{A}{R_a T^2}$$
(2-20)

La parte derecha de la **Ec**. (2-20) se puede dividir entre los cambios de entalpía,  $\Delta H_1$  y  $\Delta H_2$ , de tal forma que

$$AH = \Delta H_2 - AH, \qquad (2-21)$$

Entonces la **Ec.** (2-20) puede separarse en forma de dos ecuaciones, una para la reacción directa y la otra para la inversa, que tendrán una diferencia de concordancia con la **Ec.** (2-27):

$$\frac{\mathrm{d}(\ln k_2)}{\mathrm{d}T} \frac{\Delta H_2}{R_a T^2} \tag{2-22}$$

$$\frac{d(\ln k_1')}{dT} \stackrel{\text{AH,}}{=} \frac{AH}{R_a T^2}$$
(2-23)

Integrando cualquiera de estas ecuaciones y haciendo que la constante de integración sea igual a  $\ln A$ , se obtiene un resultado en forma de la ecuación de A rhenius, **Ec.** (2-16):

$$k = A e^{-\Delta H/R_e T} \tag{2-24}$$

Otra posible derivación esta basada en el concepto de un estado intermedio, también llamado estado de transición o activado, que es uno de los postulados de la teoría del estado de transición (Sec. 2-6). Supóngase que el producto C de la reacción

$$A + B \to C \tag{2-25}$$

sólo está formada por descomposición de una forma activada de los reactantes A y  $B_{r}$  a la que se le llamara (AB)\*. Entonces la reacción se verifica por medio de dos etapas elementales,

$$A + B \neq (AB)^*$$
 (2-26)

$$2. \ (AB)^* \rightarrow C \tag{2-27}$$

Si la primera etapa es comparativamente rápida tanto en la dirección directa como en la inversa,  $(AB)^*$  estará en equilibrio con  $A ext{ y } B$ , de tal manera que su concentración estará dada por

$$C_{AB^*} = K^* C_A C_B \tag{2-28}$$

donde  $K^{\bullet}$  es la constante de equilibrio para la formación de  $(AB)^{*}$ . La velocidad de reacción (velocidad de formación de C) queda dada por la velocidad de la etapa de descomposición de primer orden. Con la **Ec.** (2-28) esto puede expresarse como
$$\mathbf{r} = k^* C_{AB^*} = k^* K^* C_A C_B \qquad (2-28)$$

Si integramos la ecuación de van't Hoff, **Ec.** (2-18) reemplazando **K** por  $K^*$  y AH" por  $\Delta H^*$ , el resultado sera

$$K^* = I e^{-\Delta H^*/R_{\phi}T}$$
 (2-30)

donde **]** es la constante de integración. Combinando las Ecs. (2-29) y (2-30) se obtiene

$$\mathbf{r} = k^* I e^{-\Delta H^*/R_{\theta} T} C_A C_B \tag{2-31}$$

La comparación con la Ec. (2-6) muestra que

$$k = A e^{-\Delta H^*/R_s T}$$
 (2-32)

donde A =  $k^*I$ . La Ec. (2-32) corresponde también a la forma de la ecuación de Arrhenius.

Puesto que AH\* es la energía requerida para formar el estado activado  $(AB)^*$  a partir de  $A \ y \ B, \ e^{-\Delta H^*/R_*T}$  es la *expresión de Boltzmann* para la **fracción** de **moléculas** que tienen una energía  $\Delta H^*$  en exceso de la energía promedio. Esto le da un significado a la energía de activación E en la ecuación de Antenius. El dagama de la Fig. 2-1 muestra que este valor es la barrera de energía que debe superarse para formar  $(AB)^*$  y finalmente el producto C.

El valor de la **Ec**. (2-16) radica principalmente en la exactitud con la que representa datos experimentales de velocidad-temperatura **(véase** el Ej. 2-1). Cuando las velocidades experimentales no concuerdan con la teoría, generalmente se encuentra que la reación no es una etapa elemental y los meanismos cambian con la tempeatura o que las resistencias físicas **están** afectando a las mediciones. Expresado de otra forma, esto quiere decir que la **Ec**. (2-16) se correlaciona extraordinariamente bien con las mediciones de velocidad para reaciones simples libres de resistencias de difusión y térmicas.

La ecuación de Anhenius no proporciona una base para discernir el valor de E. Sin embargo, la Fig. 2-1 indica que la energía de activación debe ser superior **al** calor de la reacción total, AH, para un caso endotérmico. Además, la energia de activación de la reacción inversa es inferior a la de la reacción directa. En el caso de una reacción exotérmica, la situación es al contrario. Puesto que las velocidades suelen aumentar con la temperatura, la energía de activación es positiva. La **Ec.** (2-16) muestra que es posible obtener un valor **numérico** de E **graficando** datos experimentales de las constantes de velocidad a diferentes temperaturas. La forma logarítmica de la **Ec.** (2-16) es

$$\ln k = -\frac{E}{R_g} \left(\frac{1}{T}\right) + \ln A \tag{2-33}$$

Por tanto, una gráfica de ln k en función de 1/T, llamada curva de Arrhenius, produce una pendiente igual a -E/R. En el Ej. 2-1 se ilustra el calculo de E. Si no se



Fig. 2-1 Niveles de energía de los estados inicial, activado y final (reacción endotérmica).

conoce la **interrelación** entre **la** concentración y la velocidad, pero se dispone de datos de velocidad en función de la temperatura para concentraciones constantes, es posible obtener E a partir de una gráfica de r en función de 1/T. Considérese la **Ec**. (2-17) como ilustración. La función de la concentración, **C**<sub>4</sub>**C**<sub>5</sub> seria constante con un valor desconocido. Por consiguiente, se podría combinar con A para obtener una nueva constante, A '. Entonces, la **Ec**. (2-33) resulta aplicable cuando **In r** reemplaza **a ln k y A' reemplaza a A**.

Ejemplo 21. Wynkoop y **Wilhelm<sup>®</sup>** estudiaron la velocidad de hidrogenación del etileno, usando un catalizador de cobre-óxido de magnesio, con intervalos de presión y composición restringidos. Sus datos pueden ser interpretados con una expresión de velocidad de primer orden de la siguiente forma

$$r = (k_1)_p p_{H_2}$$
 (A)

donde r es la velocidad de reacción, en el mol  $g/(cm^3)(s)$ , y  $P_{rr2}$  es la presión parcial de hidrógeno en atmósferas. Con esta ecuación de velocidad,  $(k_1)_p$ , está dada en mol  $g/(cm^3)(s)(atm)$ . Los resultados para  $(k_1)_p$ , a diversas temperaturas se muestran en la Tabla 2-1.

(a) ¿Cuál es la energía de activación a partir de la ecuación de velocidad (A)?
 (b) ¿Cuál seria si la ecuación de velocidad se expresara en términos de la concentración de hidrógeno en vez de su presión parcial?

SOLUCIÓN. (a) En la última columna de la tabla 2-1 se muestra la recíproca de la temperatura absoluta para cada corrida. La Fig. 2-2 es una gráfica de  $(k_1)$ , en función de 1/T en coordenadas semilogarítmicas. Es evidente que los datos corresponden **a** una línea recta, excepto por las conidas **8**, 20, 21 y 22. Se ha sugerido que las bajas velocidades de estos casos pueden haber sido causadas por el vapor de **agua**.<sup>4</sup> La línea que se muestra en la figura se trazó haciendo coinci-

| Corrida              | $(k_1)_p \times 10^5,$<br>m o l  | T,<br>g/(s)(atm)(cm³)    | 1/T X 10 <sup>3</sup> ,<br>°C K <sup>-1</sup> |
|----------------------|----------------------------------|--------------------------|-----------------------------------------------|
| 1                    | 210                              | 77                       | 2.86                                          |
| 2                    | 287                              | 77                       | 286                                           |
| 3                    | 148                              | 65                       | 297                                           |
| 4                    | 071                              | 53                       | 306                                           |
| 5                    | 066                              | 53                       | 306                                           |
| 6                    | 244                              | 17.6                     | 285                                           |
| 1                    | 240                              | 716                      | 285                                           |
| 8                    | 126                              | 77.6                     | 285                                           |
| 9                    | 072                              | 529                      | 307                                           |
| 10                   | 070                              | 529                      | 307                                           |
| 11                   | 240                              | 716                      | 2.85                                          |
| 12                   | 1.42                             | 627                      | 298                                           |
| 13                   | 069                              | 537                      | 306                                           |
| 14                   | 068                              | 537                      | 306                                           |
| 15                   | 308                              | 195                      | 283                                           |
| 16                   | 306                              | 19.5                     | 283                                           |
| 17                   | 131                              | 640                      | 297                                           |
| 18                   | 137                              | 640                      | 291                                           |
| 19                   | 070                              | 545                      | 305                                           |
| 20                   | 0.146                            | 392                      | 320                                           |
| 21                   | 0.159                            | 383                      | 321                                           |
| 22                   | 0.260                            | 494                      | 310                                           |
| 23                   | 0.322                            | 402                      | 319                                           |
| 24                   | 0.323                            | 402                      | 319                                           |
| 25                   | 0.283                            | 402                      | 319                                           |
| 26                   | 0.284                            | 402                      | 319                                           |
| 27                   | 0.277                            | 39.7                     | 320                                           |
| 28                   | 0.318                            | 402                      | 319                                           |
| 29                   | 0.323                            | 402                      | 3.19                                          |
| 30                   | 0.326                            | 402                      | 319                                           |
| 31                   | 0.312                            | 399                      | 319                                           |
| 32                   | 0.314                            | 399                      | 319                                           |
| 33                   | 0.307                            | 398                      | 319                                           |
| 30<br>31<br>32<br>33 | 0.326<br>0.312<br>0.314<br>0.307 | 402<br>399<br>399<br>398 | 3<br>3<br>3<br>3                              |

Tabla 2-1 Datos para la hidrogenación de etileno.

REFERENCIA: Raymond Wynkoop y R. H. Wilhelm, Chem. Eng. Prog. 46, 300 (1950).

dir los puntos con el método de los cuadrados medios mínimos. Esto requiere que la **Ec.** (2-33) se escriba en forma logarítmica,

$$\ln (k_1)_p = \ln \mathbf{A} - \frac{E_p}{R_q} \frac{1}{T}$$
(B)

Si  $(T_i, k_i)$  representa uno de los puntos n de los datos, los valores de A y .  $E_i/R_i$  que describen la aproximación con cuadrados medios mínimos son



Fig. 2-2 Gráfica de la ecuación de Arrhenius para la hidrogenación del etileno.

$$-\frac{E_p}{R_g} = \frac{n \sum_{i=1}^n (\ln k_i) (1/T_i)}{n \sum_{i=1}^n (1/T_i)^2 - \left(\sum_{i=1}^n 1/T_i\right)^2} \ln k_i$$
(C)  
$$\ln A = \frac{\sum \ln k_i \sum (1/T_i)^2 - \sum (1/T_i)^2}{n \sum (1/T_i)^2 - \sum (\sum 1/T_i)^2}$$
(D)

Efectuando las sumas indicadas para todos los puntos de los datos, usando los valores de  $k_i$  y  $T_i$  de la Tabla 2-1, se obtiene

$$-\frac{E_p}{R_g} = -6,460$$
  

$$E_p = 6 \ 460R_g = 12,800 \ \text{cal/mol}$$

Un método más rápido, aunque menos exacto, consiste en trazar visual. mente una línea a través de los datos **graficados** en forma de la  $\ln(k_1)$  en función de 1/T, medir. la pendiente, y multiplicar por R para obtener la energía de activación. Nótese que es posible obtener un valor aproximado de E a partir de datos a dos temperaturas.

- 76 Ingeniería de la cinética química
  - (6) Para reacciones gaseosas, la ecuación de velocidad puede expresarse en términos de concentraciones o presiones. La **Ec.** (A) es la forma en términos de presiones para este ejemplo. La velocidad en base a las concentraciones es

$$\mathbf{r} = (k_1)_C C_{H_2}$$

Expresando  $(k_1)_{k_1}$  en la forma de Arrhenius y diferenciando se obtiene

$$(k_1)_C = A_C e^{-E_C/R_g T}$$

Y

$$\frac{d[\ln (k_1)_c]}{d(1/T)} = -\frac{E_c}{R_g}$$
(E)

Esto puede relacionarse a la  $\mathbf{Ec.}$  (A) observando que la concentración de  $\mathbf{H_2}$  para una mezcla de gases ideales es

 $C_{\rm H_2} = \frac{p_{\rm H_2}}{R_g T}$ 

Entonces

$$\mathbf{r} = \frac{(k_1)_C}{R_a T} p_{H_2} \tag{F}$$

La comparación de las Ecs. (A) y (F) nos proporciona la relación entre las dos constantes de velocidad,

$$(k_1)_c = (k_1)_p R_g T$$
 (G)

Diferenciando la forma logarítmica de la **Ec.** (G) y usando las Ecs. (B) y (E) se obtiene

$$\frac{d[\ln (k_1)_c]}{d(1/T)} = \frac{d[\ln (k_1)_p]}{d(1/T)} + \frac{d(\ln T)}{d(1/T)}$$
$$-\frac{E_c}{R_g} = -\frac{E_p}{R_g} - T$$
$$E_c = E_p + R_g T \tag{H}$$

0

Por tanto, la energía de activación depende, en principio, de que la ecuación de velocidad esté expresada en términos de concentraciones o de presiones parciales. Ademas, la diferencia entre  $E_c$  y  $E_p$  depende de la temperatura. En la practica, esta diferencia es muy poco significativa. En este ejemplo, a la temperatura de 77 °C,

$$E_c - E_p = 2(350 \text{ K}) = 700 \text{ cal/mol g}$$

Esta diferencia de 6% es demasiado pequeña para poder discernirse en base a las mediciones de velocidad con la precisión que generalmente se obtiene.

En este ejemplo se usaron unidades métricas (sistema cgs). En los capítulos subsiguientes emplearemos estas unidades y otras muy comunes, las del sistema inglés. Sin embargo, también se incluyen ilustraciones en unidades SI. Resulta útil recordar la conversión de algunas de las cantidades cinéticas más comunes. En el SI, la energía se expresa en (J) o kilojoules **(kJ).** Por tanto, la energía de activación del Ej. 2-1 puede expresarse como

 $(E_{\rm p})_{\rm SI} = 12\ 800(4.186\ {\rm J/cal}) = 53\ 600\ {\rm J/mol}$  o 53 600 kJ/kg mol

Nótese que la constante de los gases  $R_{e}$  en unidades SI es

 $(R_g)_{SI} = 1.985 \frac{\text{cal}}{(\text{mol})(\text{K})} (4.186 \text{ J/cal})$ = 8.314 J/(mol)(K)

Las constantes de velocidad de primer orden en  $(s)^{-1}$  son iguales en los sistemas cos o SI. Las constantes de velocidad de orden *n* tienen unidades de  $(tiempo)^{-1}(conc)^{1-n}$ . Por tanto, para una reacción de segundo orden,  $k_2$  en  $cm^3/(mol)(s)$  debe multiplicarse por  $(10^{-6} m^3/cm^3)(10^3 mol/mol k)$  o  $10^{-3}$  para convertir a  $k_2$  en  $m^3/(mol k)(s)$ .

### 2-6 Predicción de velocidades de reacción-Teorías de la cinética

Si el factor de **trecuencia** *A* y la energía *E* pudieran evaluarse a partir de propiedades moleculares de las especies reaccionantes, se contaría con un método para *predecir* velocidades de reacción para las etapas elementales. No se requerirían experimentos cinéticos. La ciencia de la cinética todavía no se ha desarrollado hasta este nivel. Sin embargo, resulta útil resumir brevemente el estado de las teorías para predecir velocidades.

Una forma elemental de la teoría cinética de los gases inspiró la teoría de las colisiones. Bajo este punto de vista, la reacción se verifica cuando la colisión de las moléculas reaccionantes desprende suficiente energía para proporcionar la energía de activación **necesaria**,<sup>10</sup> esto es, para superar el nivel de energía que se muestra en la Fig. 2-1. Esta idea condujo a una expresión de velocidad basada en la frecuencia de las colisiones moleculares y la fracción de colisiones que desprenden la energía mínima requerida.

Ejemplo 2-2. Use la teoría de las colisiones como estimación de la velocidad específica de reación para la descomposición del **yoduro** de hidrógeno, 2HI –  $I_2 + H_2$ . Supongamos que el **diámetro** de colisiones  $\sigma$ es 3.5 Å (3.5 x 10<sup>-8</sup> cm), y utilice la energía de activación a 44 000 **cal/mol** g determinada experimentalmente por **Bodenstein**.<sup>11</sup> Evalúe también el factor de frecuencia.

<sup>10</sup> M. Polanyi, Z. Elektrochem 26, 48 (1920).

<sup>11</sup> M. Bodenstein, Z. *Physik Chem*, 100, 68 (1922).

SOLUCIÓN: De acuerdo con la teoría de las colisiones, la velocidad de la reacción  $A + B \rightarrow$  productos esta dada por

$$\mathbf{r} = C_A C_B \sigma_{AB}^2 \left( 8\pi R_g T \frac{M_A + M_B}{M_A M_B} \right)^{1/2} e^{-E/R_g T}$$
(2-34)

donde  $M_A$  y  $M_B$  son los pesos moleculares de A y B y  $\sigma_{AB}$  es el diámetro de colisión. La cantidad exponencial representa la fracción de colisiones que liberan una energía igual a E o mayor. La cantidad preexponencial es la velocidad de colisiones por cm<sup>3</sup> de mezcla reaccionante cuando las concentraciones están dadas en mol/cm<sup>3</sup>.

Para la reacción 2HI - 1, + H<sub>2</sub>

$$M_{A} = M_{B} = M_{HI} = 128$$

Las otras cantidades numéricas requeridas son

$$R_{g} = k_{B}n = (1.38 \times 10^{-16})(6.02 \times 10^{23})$$
  
= 8.30 x 10' ergs/(K)(molg) o 1.98 cal/(mol g)(K)  
$$\sigma_{AB} = 3.5 \times 10^{-8} \text{ cm}$$
  
$$E = 44000 \text{ cal/mol g}$$
  
$$T = 273 + 321.4 = 594.6 \text{ K}$$

Sustituyendo estos valores en la Ec. (2-34)

$$k = (3.5 \times 10^{-8})^2 \left[ 8\pi (8:30 \times 10^7) 594.6 \left(\frac{2}{128}\right) \right]^{1/2} e^{-44.000/R_0 T}$$
  
=  $\frac{1.70}{10} \times 10^{-10} e^{-37.4}$  cm<sup>3</sup>(molécula)(s)

Para convertir este resultado **a** las unidades de  $cm^3/(mol g)(s)$  es necesario multiplicar por el número de Avogadro, 6.02 x  $10^{23}$  moléculas/mol:

$$k = 6.02 \times 10^{23} \times 1.70 \times 10^{-10} e^{-37.4}$$
  
= 1.02 × 10<sup>14</sup> e^{-37.4} = 5.7 × 10^{-3} cm<sup>3</sup>/(mol g)(s) (A)

Tal como veremos en el Ej. 2-7, la constante de velocidad a partir de los datos de Kistiakowsky es  $2.0 \times 10^{-3} \text{ cm}^3/(\text{mol g})(\text{s})$ . Para reacciones en las que participan moléculas más complejas, las velocidades experimentales suelen ser muy inferiores a las que predice la teoría.

La comparación de la forma de la **Ec.** (A) y la expresión de Arrhenius muestra que el factor de frecuencia es

$$A = 1.0 \text{ x } 10^{14} \text{ cm}^3/(\text{mol g})(s)$$

Se ha determinado que la teoría de las colisiones produce resultados que concuerdan bien con datos experimentales para diversas reacciones bimoleculares gasexas. La descomposición del **yoduro** de hidrógeno considerada en el Ej. 2-2 ilustra este caso. Esta teoría también es satisfactoria para varias reacciones en solución a base de iones simples. Sin embargo, en muchos otros casos, las velocidades que se predicen con este mátodo son muy altas. Las predicciones de factores de frecuencia están situadas en un intervalo estrecho de **10<sup>12</sup>** a **10<sup>14</sup>**, mientras que los valores medidos pueden ser de varios órdenes de magnitud menores. Parece ser que la desviación aumenta con la complejidad de las moléculas reaccionantes. (Ademas, es **difícil** racionalizar las descomposiciones moleculares con la teoría de las colisiones.)

Empezando aproximadamente en 1930, Eyring, Polanyi y **cols.**, aplicaron los principios de la mecánica **cuántica** a este problema, y el resultado se conoce como *teoría del complejo activado o teoría del estado de transición*<sup>\*\*</sup> De acuedo con esta teoría, todavía se supone que la reacción se verifica como resultado de colisiones entre las moléculas reaccionantes, **pero se** examina con mas detalle lo que sucede después de la colisión. Este examen se basa en el concepto de que las moléculas po-seen niveles de energía vibracionales, rotacionales y translacionales.

El postulado esencial de esta teoría consiste en la formación de un complejo activado (o estado de transición) a partir del reactante, y que este complejo se descompone posteriormente para formar los productos. Se supone que el complejo activado está en equilibrio termodinámico con los reactantes. Entonces, la etapa que controla la velocidad es la descomposición del complejo activado. Este concepto de una etapa de activación en equilibrio, seguida de una lenta descomposición, es equivalente a suponer un desfasamiento entre la activación y la descomposición para finalizar en los productos de la reacción. Esta es la respuesta al problema propuesto por la teoría con respecto a por qué no todas las colisiones son efectivas en cuanto a producir una reacción.

Estas ideas pueden ilustrarse con una reacción simple entre A y B para formar un producto C. Si el complejo activado se designa por  $(AB)^*$ , el proceso total puede escibirse como sigue:

$$A + B \rightleftharpoons (AB)^* \rightarrow C$$

Puesto que se supone que la primera etapa esta en equilibrio, la concentración de (*AB*)\* es la que está determinada por la constante de equilibrio. Entonces, la velocidad de la reacción total es igual al producto de la fiecuencia de descomposición del complejo y su concentración de equilibrio, o

$$\mathbf{r} = \nu C_{AB} \cdot \text{moléculas/(s)(cm^3)}$$
(2.35)

donde V está en unidades (por segundo) y la concentración  $C_{ABB}$  está en moléculas por centímetro cúbico.

Usando los principios termodinámicos para expresar  $C_{AB}$  en términos de  $C_A$  y  $C_B$ , así como la mecánica cuántica para evaluar la frecuencia de descomposición  $\mu$ , la velocidad esta dada por

<sup>&</sup>lt;sup>12</sup> Samuel Glasstone, K. J. Laidler, y Henry Eyning, "The Theory of Book Company, New York, 1941.

$$\mathbf{r} = \frac{k_B T}{h} \frac{\gamma_A \gamma_B}{C^\circ \gamma_{AB}} (e^{-\Delta F^*/R_0 T}) C_A C_B$$
(2-36)

donde  $k_B$  = constante de Boltzmann, 1.380 x 10<sup>-16</sup> erg/K(1.38 x 10<sup>-23</sup> J/K) h = constante de Planck, 6.024 x 10<sup>-27</sup> erg(s)[6.024 x 10<sup>-34</sup> J(s)]  $C^0$  = concentración de estado normal usada para definir el coeficiente de actividad  $\gamma$ ; esto es,

$$a_i = \gamma_i C_i / C_i$$

Por lo que la velocidad especifica de reacción es

$$k = \frac{k_B T}{hC^{\circ}} \left( \frac{\gamma_A \gamma_B}{\gamma_{AB}} \right) e^{-\Delta F^*/R_{\phi}T} = \frac{k_B T}{hC^{\circ}} \left( \frac{\gamma_A \gamma_B}{\gamma_{AB}} \right) e^{\Delta S^*/R_{\phi} - \Delta H^*/R_{\phi}T}$$
(2-37)

Esta última forma toma en cuenta la relación termodinámica AF = AH — TAS.

La comparación de la Ec. (2-37) con la ecuación de Arrhenius muestra que

$$A = \frac{k_B T}{h C^{\circ}} \left( \frac{\gamma_A \gamma_B}{\gamma_{AB}} \right) e^{\Delta S^*/R_{\theta}}$$
(2-38)

$$E = \Delta H^* \tag{2-39}$$

Estas dos relaciones son las predicciones de la teoría del complejo activado para el factor de frecuencia y la energía de activación.

La teoría de las colisiones, esto es, la **Ec.** (2-34) no ofiece un médob para calcular la energía de activación. La teoría del complejo activado sugiere que *E* es el cambio de entalpía para la **formación** del complejo activado a partir de los reactantes, es decir, la **Ec.** (2-39). Para predecir esta entalpía debernos conocer exactamente la identidad del complejo activado, esto es, tenemos que conocer su estructura. Aun así, la predicción de la entalpía a partir de datos de estructura molecular por medio de mecánica estadística, es una operación con incertidumbres, a menos que se trate de las moléculas más simples. Eckert y **Boudart<sup>13</sup>** han ilustrado el procedimiento de calculo para la reacción de la descomposición del **yoduro** de hidrógeno. Si las mediciones experimentales proporcionan un valor de la energía de **activación**, solamente se necesita la teoría para estimar el factor de frecuencia a partir de la **Ec.** (2-38). Nuevamente se requiere conocer la estructura del complejo activado, esta vez para calcular la entropía de activación, AS. \*

Las incertidumbres con respecto a la estructura del complejo activado, y las suposiciones involucadas en el calculo de sus propiedades termodinámicas limitan seriamente el valor practico de la teoría. Sin embargo, sí suministra una interpretación cualitativa de la forma en que reaccionan las moléculas y proporciona un cierto gado de garantía para las expresiones empíricas de velocidad deducidas de los datos experimentales. Es sumamente difícil evaluar el efecto de la temperatura sobre el factor de frecuencia en base a mediciones de velocidad. Esto se debe **a** que la fuerte

<sup>13</sup> C. A. Eckert y M. Boudart, Chem. Eng. Sci. 18, 144 (1963).

función exponencial en la ecuación de Antenius enmascana en forma efectiva la dependencia de A con respecto a la temperatura. La **Ec**. (2-38) sugiere que A es proporcional a *T*, la teoría de las colisiones indica una dependencia con respecto a  $T^{1/2}$ [Ec. (2-34)], y la expresión de Arrhenius [Ec. (2-16)] implica que A no es afectada por la temperatura. Normalmente es imposible medir velocidades de reacción con suficiente sensibilidad para evaluar estas diferencias.

En la Ec. (2-35) se supone que la velocidad es proporcional a la concentración del complejo activado. Del mismo modo, en la teoría de las colisiones, Ec. (2-34), se supone tácitamente que la concentración determina la frecuencia de las colisiones y la velocidad. Sin embago, si se consideraran los resultados de la termodinámica, se podría suponer que la velocidad es proporcional a la actividad. Si la actividad reemplazara a la concentración en la Ec. (2-35), no se necesitaría el coeficiente de actividad del complejo activado. Entonces, la expresión final para la constante de velocidad sería:

$$k = \frac{k_B T}{h} \gamma_A \gamma_B e^{\Delta S^*/R_g - \Delta H^*/R_g T}$$
(2-40)

en vez de la **Ec.** (2-37). Puesto que el coeficiente de actividad es una función de la presión, los valores de k que se predicen en base a las dos ecuaciones varían ampliamente con la presión.

Eckert y **Boudart<sup>14</sup>** analizaron datos de velocidad para la descomposición del HI siguiendo este procedimiento. Sus resultados eran más compatibles con la **Ec. (2-37)**, lo que sugiere que la velocidad es proporcional a la *concartinación* del complejo activado. En este libro, la ecuación de velocidad se escribirá en términos de concentra**ciones**.

Se recomienda consultar los libros de tallada del estado actual de las teorías mación de constantes de velocidad. Benson y Laidler<sup>15</sup> para una discusión de predictivas y la correlación de métodos y esti-

# 2-7 Constantes de velocidad y de equilibrio

Se ha mencionado que para cualquier reacción elemental, la constante de equilibrio *K* es igual a la relación de las constantes de velocidad directa e inversa, **Ec.** (2-15). Esto se deduce del *principio de la nexesibilidad microscópica*<sup>16</sup> que enuncia que, en el equilibrio, las velocidades de las direcciones directa e inversa son iguales; esto es, la velocidad *neta* es cero. Se presenta entonces la interrogante de que la relación de las constantes de velocidad directa e inversa sea o no igual a la constante de equilibrio para un proceso no elemental. Considérese la reacción total

$$A \rightleftharpoons C$$
 (A)

14 Ibid.

<sup>&</sup>lt;sup>16</sup> K. J. Laidler, "Theories of Chemical Reaction Rates," McGraw-Hill Book Company, New York,

que se verifica por medio de la siguiente secuencia de etapas elementales:

1. 
$$A \stackrel{k_1}{\underset{k_{1'}}{\longrightarrow}} B$$
 (B)

2. 
$$B \stackrel{k_2}{\rightleftharpoons} C$$
 (C)

Si el sistema está en equilibrio completo, esto es, en equilibrio con respecto a las reacciones 1 y 2, podemos escribir que

$$K = \left(\frac{C_c}{C_A}\right)_{eq} \tag{D}$$

donde K es la constante de equilibrio para la reacción total, **Ec.** (A). Aplicando el principio de reversibilidad microscópica a las reacciones elementales (B) y (C),

$$\left(\frac{C_B}{C_A}\right)_{eq} = \frac{k_1}{k'_1} \qquad y \qquad \left(\frac{C_C}{C_B}\right)_{eq} = \frac{k_2}{k'_2}$$

En base a estas expresiones,

$$\left(\frac{C_c}{C_A}\right)_{\rm eq} = \frac{k_2}{k_2'} \frac{k_1}{k_1'} \tag{E}$$

La comparación de las Ecs. (D) y (E) produce la siguiente expresión

$$K = \frac{k_2}{k'_2} \frac{k_1}{k'_1}$$
(F)

La **Ec.** (F) es la relación correcta entre las constantes de equilibrio y de velocidad y no la **Ec.** (2-15). Esto puede demostrarse de la siguiente manera. Al establecerse el equilibrio completo, la concentración del intermediario B es constante. Por tanto, podemos escribir que

$$\frac{dC_B}{dt} = 0 = k_1 C_A - k_1' C_B - k_2 C_B + k_2' C_C$$

o bien

$$C_{B} = \frac{k_{1}C_{A} + k_{2}C_{C}}{k_{1}' + k_{2}} \tag{G}$$

La expresión apropiada para la velocidad de desaparición de **A** es

$$\mathbf{r} = -\frac{dC_A}{dt} = k_1 C_A - k_1 C_B \tag{H}$$

Introduciendo la Ec. (G) para  $C_{\mu}$ ,

$$\mathbf{r} = k_1 C_A - \frac{k_1' (k_1 C_A + k_2' C_c)}{k_1' + k_2}$$
$$\mathbf{r} = \frac{k_1 k_2}{k_1' + k_2} C_A - \frac{k_1' k_2'}{k_1' + k_2} C_c \tag{I}$$

Esta ecuación satisface el requerimiento de que en el equilibrio (r = 0), K está dada por la **Ec.** (F). Sin embago, supóngase que llevamos a cabo mediciones para la velocidad de desaparición de **A** empezando solamente con **A**, por lo que no están presentes B y C -condición de no equilibrio-. Entonces, la velocidad está dada por

$$-\frac{dC_A}{dt} = k_1 C_A$$

Estos experimentos determinan  $k_1$ . De manera similar, si se llevaran a cabo mediciones con C puro solamente, se obtendría  $k'_2$ . No es correcto usar estos resultados de no equilibrio escribiendo una expresión para la velocidad neta de desaparición de A tal como

$$\mathbf{r} = -\frac{dC_A}{dt} \neq k_1 C_A - k_2' C_C \tag{J}$$

Análogamente, esta expresión no se puede aplicar en el equilibrio (r = 0) para escribir

$$K = \left(\frac{C_c}{C_A}\right)_{eq} \neq \frac{k_1}{k'_2} \tag{K}$$

Se concluye que la relación de las constantes de velocidad directa e inversa solamente es igual a K para una reacción no elemental cuando las constantes de velocidad se evalúan en condiciones cercanas a las de equilibrio. Además, dichas constantes de velocidad no serán iguales a los valores de k para las etapas individuales, sino en combinaciones de constantes de velocidad, tal como lo ilustra la **Ec.** (1). La falla de la **Ec.** (K) concuerda con el hecho de que los órdenes de una reacción [a,  $\beta$  en la **Ec.** (2-9)] no son necesariamente iguales a los números estequiométricos,  $v_i$ .

#### 2-8 Reacciones en cadena

Se ha demostrado que varios tipos importantes de reacciones industriales, **tales** como el cracking de hidrocarburos y la fotocloración, consisten en una serie de etapas elementales en las que hay uno o más intermediarios activos que se están regenerando continuamente. Esta regeneración hace que estos sistemas sean de tipo diferente a todas las secuencias de etapas elementales que hemos estudiado hasta ahora. La pimera etapa de una reacción en cadena es la formación de un intermediario activo,

### 84 Ingeniería de la cinética química

átomo o un radical libre. Puesto que este proceso requiere la ruptura que nuede ser un de un enlace de una molécula estable, generalmente se necesita una energía considerable (por ejemplo, unas 35 kcal/mol para la disociación del Cl,). Como resultado, la energía de activación es alta y la velocidad de la etapa de iniciación es baja. Para incrementar la velocidad de iniciación se puede aumentar la temperatura o usar una fuente externa de energía, tal como la energía radiante (iniciación fotoquímica). La iniciación va seguida de las etapas de propagación en las que se forma el producto y se regenera el átomo o radical libre. Las velocidades de las etapas de propagación suelen ser altas, pues participan átomos o radicales muy reactivos. La energía de activación de estos procesos es baja. La velocidad de formación del producto puede ser muy alta aun cuando la de iniciación sea baja. Esto se debe a que, una vez que se genera un átomo o un radical libre, éste puede producir muchas moléculas del producto estable por medio de las etapas de propagación. Esto explica los altos rendimientos cuánticos de muchos procesos fotoquímicos. Una de las evidencias que sugiere la posibilidad de un mecanismo en cadena es la existencia de un periodo de inducción. Esto es causado por la necesidad de eliminar pequeñas cantidades de susactúan para eliminar radicales libres o átomos. La velocidad sera de cero tancias que durante el periodo de tiempo en el que estas sustancias, que casi siempre son impurezas como el oxígeno, se consumen para producir los radicales libres. Otra de las evidencias de un mecanismo en cadena es la existencia de velocidades muy altas (por ejemplo, explosivas) cuando se generan dos o más radicales libres por cada radical consumido. La velocidad de las reacciones en cadena esta limitada por la extracción del intermediario activo en la tercera etapa del mecanismo -reacciones de Los tres tipos de etapas elementales (iniciación, propagación y termiterminación-. nación) determinan la velocidad neta de formación de productos. Puesto que los átomos o radicales libres son muy reactivos, la hipótesis del estado estacionario (Sec. 2-4) resulta una buena aproximación. Aplicada a cada intermediario activo, esta aproximación permite expresar la velocidad en términos de concentraciones de especies estables. Considérese como ilustración la cloración del propano (PrH). La evidencia experimental sugiere la siguiente secuencia:

### iniciación

$$Cl^* \xrightarrow{k_1} 2Cl$$

Propagación

$$Cl + PrH \xrightarrow{k_2} Pr + HCl$$
$$Pr + Cl, \xrightarrow{k_3} PrCl + Cl$$

Terminación

$$\begin{array}{c} Cl + Cl \rightarrow Cl_2 \\ k_s \\ Cl + Pr \rightarrow PrCl \end{array}$$
 homogéneas

 $\begin{array}{c} Cl+W \xrightarrow{k_6} & \text{producto final} \\ Pr+W \xrightarrow{k_7} & \text{producto final} \end{array} \right|_{heterogéneas}$ 

En la etapa de iniciación, los **atomos** de cloro activados pueden obtenerse por medio de colisiones intermoleculares de moléculas calentadas a temperaturas elevadas (activación térmica). Por otra parte, la molécula de cloro puede absorber energía radiante de la longitud de onda apropiada para disociarse (activación fotoquímica). Las etapas de propagación son por lo general reacciones que forman productos (clonuro de **propilo**, **PrCl** y HCl) y también regeneran átomos de cloro. El Pr y el Cl son *portadores de adam*. Solamente se necesita una **pequeña** cantidad de iniciación para empezar la cadena y lograr velocidades altas de formación de productos. Sólo se requiere una pequeña cantidad de iniciación para iniciar la cadena y obtenerse grandes velocidades de formación de producto. Tal como lo muestran las reacciones, la terminación puede ser homogénea (verificándose por colisiones intermoleculares) o heterogénea (verificándose por colisiones con la pared W del reactor).

Cuando las etapas de propagación producen *dos* portadores de cadena por cada uno que se consume, el radical extra puede causar mayor propagación o puede destruirse mediante el proceso de terminación. Si no se destruye, el aumento de propagación (y de formación de productos) tiende a ser infinito, lo que resulta en una explosión. La oxidación del hidrógeno constituye un ejemplo. Después de que la iniciación produce H, éste puede reaccionar con el  $O_2$  formando *dos* portadores de cadena, OH y 0. Ambos portadores de cadena se propagan para formar el producto y regenerarse. De esta forma, la secuencia de reacciones es

> 1.  $H + O_2 \rightarrow OH + O$ 2.  $OH + H_2 \rightarrow H_2O + H$  propagación 3.  $O + H_2 \rightarrow OH + H$

A las reacciones del Tipo 1 se les llama etapos de mutificación en cadena.

La polimerización no se verifica por medio de una secuencia normal de reacciones en cadena, pues no se regenera el reactante activado. No existe un portador de cadena Sin embargo, el proceso total puede analizarse en muchos casos como una combinación de etapas de iniciación, propagación y terminación. Por ejemplo, supóngase que **P**, representa un polímero reactivo que contiene **r** moléculas de monómero, y que **M**, representa un polímero inactivo de **r** + **n** moléculas de monómero. El proceso de polimerización puede describirse mediante las siguientes reacciones, en las cuales Mes la alimentación de monómero y **P**<sub>1</sub> es una forma activada de dicho monómero:

#### Iniciación

Propagación

$$M \rightarrow P_1$$

 $M + P_{r-1} \rightarrow P_r$ 

Terminación

$$P_r + P_n \to M_{n+r}$$

$$P_{r-1} + P_n \to M_{r-1+n}$$

Los problemas cinéticos de interés en las reacciones en cadena, al igual que en todos los sistemas complejos, consisten en predecir la conversión de cada producto y la distribución de los mismos en función del tiempo, a partir de las ecuaciones de velocidad de las reacciones individuales, o en decidir cuáles son las reacciones involucradas y evaluar sus constantes de velocidad, a partir de datos experimentales referentes a la conversión y a la distribución de los productos. Estos métodos se ilustran con una reacción fotoquímica en el Ej. 2-3. La polimerización se discutirá con mayor detalle en el Cap. 4, después de haber considerado el funcionamiento de reactores.

Ejemplo 2-3. Las mediciones experimentales para la fotocloración de propano a 25 °C y 1 atm, muestran que la velocidad de consumo de Cl<sub>2</sub> es independiente del propano, de segundo orden con respecto al cloro y de primer orden con respecto a la intensidad lumínica. <sup>17</sup> Suponiendo que la etapa de terminación que controla sea la terminación heterogénea de radicales **propilo**, demuestre que la descripción de etapas elementales que se discutió para la cloración del propano, explica satisfactoriamente los datos experimentales.

**SOLUCIÓN**. Si **h**es la constante de Planck y **n**es la frecuencia de la radiación, la reacción de iniciación para una activación fotoquímica puede escribirse como

 $Cl_{,} + hv \rightarrow 2Cl$ 

La velocidad de formación de **atomos** de CI depende de la velocidad volumétrica de absorción de energía radiante, *Ia*, de acuerdo a la expresión

$$\mathbf{r}_i = 2\phi_i I a$$
 (A)

donde  $\phi$  es el rendimiento cuántico de la etapa de iniciación.<sup>\*\*</sup> La velocidad de absorción de energía es igual a la intensidad de la radiación, Z, multiplicada por la absortividad  $\alpha$  y la concentración de cloro, por lo que la **Ec.**(A) se transforma en

$$\mathbf{r}_i = 2\phi_i \alpha C_{\mathrm{Cl}_2} I = 2k_1 C_{\mathrm{Cl}_2} I$$

donde la constante de velocidad equivalente para la etapa de iniciación es  $k_1 = \phi_1 \alpha$ . Supóngase que las concentraciones de los intermediarios llegan rápidamen-

<sup>17</sup> A.E. Cassano y J. M. Smith, AIChE J, 12, 1124 (1966).

<sup>&</sup>lt;sup>10</sup> El rendimiento cuántico es el número de moléculas formadas por cada cuanto de energia absorbida. Para una etapa primaria, do tiende a infinito. Nótese que el coeficiente 2 de la Ec. (A) toma en consideración la formación de dos átomos de cloro por cada molécula de Cl<sub>2</sub>,

te a valores constantes bajos; esto es, que la hipótesis del estado estacionario es válida:

$$\frac{dC_{Pr}}{dt} = \frac{dC_{Cl}}{dt} = 0 \tag{B}$$

Podemos escribir dos ecuaciones independientes a partir de la **Ec. (B)**,<sup>19</sup> una para Pr y otra para Cl, usando las etapas elementales descritas en la Pág. 58.

$$\frac{dC_{\alpha}}{dt} = 0 = k_2 C_{\Omega} C_{PrH} - k_3 C_{Pr} C_{\Omega_2} - k_7 C_{Pr}$$
$$\frac{dC_{\Omega}}{dt} = 0 = 2\phi_i \alpha C_{\Omega_2} I - k_2 C_{\Omega} C_{PrH} + k_3 C_{Pr} C_{\Omega_2}$$

Sumando estas dos expresiones se obtiene  $C_{P_{f}}$  en términos de las concentraciones de especies estables y de las constantes de velocidad,

$$C_{\rm Pr} = \frac{2\phi_i \alpha C_{\rm Cl_2} I}{k_7} \tag{C}$$

La velocidad de consumo de Cl, o de formación de cloruro de propilo se obtiene de la segunda reacción de propagación. De esta forma<sup>20</sup>

$$-\frac{dC_{C_2}}{dt} = k_3 C_{Pr} C_{C_2} \tag{D}$$

Usando la Ec. (C) en la Ec. (D) se obtiene

$$-\frac{dC_{Cl_2}}{dt} = \frac{2k_3\phi_i}{k_7}\alpha C_{Cl_2}^2 I = \frac{2k_3k_1}{k_7}C_{Cl_2}^2 I$$
(E)

Este es el resultado deseado, que da la velocidad como segundo orden con respecto al cloro y de primer orden con respecto a la intensidad de la luz. Al selecdiversas etapas de terminación ന്ന reacciones cionar controladoras, podemos  $-dC_{\rm Cl}/dt$ , entre las cuales aparecen los térobtener diferentes expresiones para minos  $C_{PP}C_{CL}$  e Z a otras potencias. La comparación de los resultados con las velocidades determinadas experimentalmente, nos permite seleccionar la mejor forma para la ecuación de velocidad, y evaluar el cociente de las constantes de velocidad; por ejemplo,  $k_1k_1/k_2$  en la Ec. (E). Por lo general, los valores individuales de k no se pueden establecer en base a mediciones de especies estables.

No se han mencionado los efectos de la longitud de onda, de la medición de la intensidad lumínica y de otras complicaciones de los estudios fotoquímicos. Estos problemas y otros similares pueden estudiarse en la **bibliografia**.<sup>21</sup>

<sup>19</sup> Para escribir estas expressiones solamente se necesita una etapa de terminación en la que esté involucrada  $k_{7}$ , pues se supone que controla el proceso de terminación.

<sup>20</sup> Puesto que las etapas de propagación son rápidas con respecto a la iniciación, el cloro consumido por la reacción de iniciación puede ignorarse.

<sup>&</sup>lt;sup>21</sup> J. G. Calvert y J. N. Pitts, Jr., "Photochemistry," John Wiley & Sons, Inc., New York, 1966.

## EVALUACION DE ECUACIONES DE VELOCIDAD A PARIIR DE DATOS DE LABORATORIO

El ingeniero químico necesita una ecuación numérica para la velocidad intrínseca y poder diseñar un reactor a escala comercial. Con respecto a la Ec.(2-17), necesita conocer la forma de la función de concentración, incluyendo los valores numéricos para las constantes de dicha función, y un valor para la energía de activación.22 En la Sec. 2-5 se consideró el método para evaluar E por lo que en esta sección sólo nos interesan los sistemas isotérmicos. Por lo general, la información disponible son los datos a escala de laboratorio de concentraciones en función del tiempo. A partir de esta información es necesario determinar la expresión de la Ec. (2-9) que mejor concuerde con los datos disponibles. Esto casi siempre requiere un procedimiento de pueba y enor, comparando diversas ecuaciones de velocidad propuestas con los datos. Puesto que es probable que la reacción sea una combinación de varios procesos elementales, los datos adicionales auxiliares pueden ser muy útiles para la primera tarea de postular expresiones de velocidad. Este tipo de información incluye la identificación de los intermediarios y el conocimiento de las ecuaciones de velocidad que se sabe que concuerdan con los datos para otros ejemplos del mismo tipo de reacción. Las discusiones de las secciones anteriores proporcionan una base para postular la forma de la ecuación de velocidad a partir del mecanismo. Sin embargo, el problema de determinar una función de concentración apropiada es diferente 3 mucho mas simple que el establecimiento de un mecanismo para la reacción. Toda lo que el ingeniero químico requiere es una ecuación de la velocidad que sea exacta en el intervalo de condiciones que se espera prevalecerá en el reactor a escala comercial. Aunque resulta útil conocer el mecanismo, ello no es un requisito para el diseño de reactores. Por otra parte, una ecuación de velocidad satisfactoria no siempre proporciona suficiente información para establecer el mecanismo de la reacción.

En la siguiente discusión se supone que los datos cinéticos son reproducibles y precisos. Existen varios procedimientos de laboratorio para detectar el curso de una reacción. Hill<sup>23</sup> ha resumido muchos de estos procedimientos listando los requerimientos para obtener datos adecuados. Recuérdese que en todos **los** casos de este capítulo, el estudio está limitado a *reacciones homogénaspor lotes a volumen constante.* 

La comparación de la **cinética** experimental con las ecuaciones de velocidad propuestas puede llevarse a cabo de dos maneras:

 El mátodo de integración, que consiste en 'comparar las concentraciones observada y estimada en función del tiempo. Al usar este mátodo es necesario integrar la ecuación de velocidad para predecir la relación de C<sub>i</sub> en función de t. En las siguientes secciones se resumen estas integraciones para reacciones inteversibles, reversibles y complejas.

**<sup>22</sup>** La Ec. (2-17) es aplicable a una sola reacción inteversible. Las reacciones complejas reversibles requieren información similar. En las **Secs.** 2-10 y 2-11 se incluyen algunos ejemplos de este tipo.

<sup>&</sup>lt;sup>21</sup>C.G. Hill, Jr., "An Introduction to Chemical Engineering Kinetics and Reactor Design," John Wiley and Sons, New York, 1977.

2. El método diferencial requiere una diferenciación de los datos experimentales de C, en función de t, para obtener una velocidad experimental. La velocidad se compara entonces con la obtenida en base a la ecuación de velocidad propuesta. Ambos métodos se illustran en algunos de los Ejs. (2-4 a 2-6) que siguen. Además, se explican algunas de las técnicas experimentales (por ejemplo, los métodos de

*velocidad inicial y* de *vida media*) que se usan en la cinética. Posteriormente se considera la integración de las ecuaciones simples de velocidad en preparación para el uso del método de integración.

## 29 Ecuaciones concentración-tiempo para una sola reacción irreversible

*Orden can*. El orden cero que significa la velocidad es independiente de la concentración, puede presentarse en dos situaciones: cuando la velocidad es intrínsecamente independiente de la concentración y cuando la especie es de tal manera abundante que su concentración es prácticamente constante durante la reacción. En este último caso, es imposible detectar la dependencia de la velocidad con respecto a la concentración, y prevalece un orden cero aparente. De esta forma, en la oxidación del NO a **NO**<sub>2</sub> en presencia de un gran exceso de **O**<sub>2</sub>, la velocidad es de orden cero con respecto al **O**<sub>2</sub>.

Para una reacción de orden cero a densidad constante, la **Ec.** (2-0) se transforma en

$$-\frac{dC_A}{dt} = k_0 \tag{241}$$

Integrando desde una condición inicial  $C_A = C_{A_0}$  se obtiene

$$C_{A} - C_{A_{0}} = -k_{0}t \tag{2-42}$$

Este resultado muestra que la característica distintiva de una reacción de orden cero consiste en que la concentración del reactante disminuye linealmente con el tiempo. Es **difícil** citar una reacción homogénea que sea intrínsecamente de orden cero, aunque muchas reacciones son aparentemente de orden cero cuando la concentración de la especie es alta. Sin embargo, en algunas reacciones heterogéneas donde la fase so-lida actúa como catalizador, la velocidad es de orden cero. Un ejemplo es la descomposición del NH, sobre superficies de platino y tungsteno."

La **Ec.** (2-42) puede usarse con mediciones de concentracion en funcibn del tiempo, para determinar si la reacción es de orden cero y evaluar k. Si participan dos reactantes,  $A \ y \ B$ , se pueden efectuar experimentos con A estando en gran exceso, de tal manera que la ecuación de velocidad sea independiente de **C**<sub>A</sub>. Se procede entonces a variar la concentración de B para determinar el orden con respecto a este **reactante.** Este procedimiento sirve para cancelar el efecto de la concentración de uno de los reactantes y poder estudiar el de otro.

Puede resultar mas simple medir el tiempo de desaparición de una cierta fracción del reactante que obtener datos de concentración en funcion del tiempo. El mé-

### <sup>14</sup>C.N. Hinshelwood y R. E. Burk, J. Chem. Soc., 127, 1051, 1114 (1925).

todo más común consiste en determinar el tiempo requerido para que desaparezca la mitad del reactante. Definiendo esta vida media como  $t_{1/2}$ , de la **Ec.** (2-42) se obtiene **que** 

$$\frac{1}{2}C_{A_0} - C_{A_0} = k_0 t_{1/2}$$

0

$$t_{1/2} = \frac{C_{A_0}}{2k_0}$$
(2-43)

Los datos de vidas medias pueden emplease con la  $\mathbf{Ec.}$  (243) para evaluar  $k_0$  como otra alternativa a la  $\mathbf{Ec.}$  (2-42).

Primer orden. La Ec. (2-9) para una velocidad de primer orden es

$$-\frac{dC_A}{dt} = k_1 C_A \tag{2-44}$$

Si la condición inicial es  $C_A = C_{A_0}$ , la integración nos da

$$-\ln \frac{C_A}{(C_A)_0} = k_1 t \tag{245}$$

Este resultado muestra que la relación lineal entre  $\ln C_A/(C_A)_0$  y *t* sugiere una reacción de primer orden. La vida media está dada por

$$k_1 t_{1/2} = -\ln \frac{1}{2} \tag{2.46}$$

0

$$t_{1/2} = \frac{1}{k_1} \ln 2 \tag{2-47}$$

Las Ecs. (2-45) y (2-47) muestran que la vida media y la fracción de reactante que queda son independientes de la concentración inicial en las reacciones de primer orden.

En los numerosos ejemplos de reacciones homogéneas de primer orden se cuenta la reordenación de ciclopropano a **propileno**,<sup>25</sup> algunas isometizaciones cis-trans y la inversibn de la sacarosa.

Segundo orden Existen dos tipos de reacciones de segundo orden: Tipo I.  $A + A \rightarrow P$ 

$$-\frac{dC_A}{dt} = k_2 C_A^2 \tag{2-48}$$

Tipo II.  $A + B \rightarrow P$ 

$$-\frac{dC_A}{dt} = k_2 C_A C_B \tag{2-49}$$

<sup>15</sup> T.S. Chambers y G.B. Kistiokowsky, J. Am. Chem. Soc., 56, 399 (1934).

Para el tipo I, la integración de la Ec. (2-48) nos da

$$\frac{1}{C_A} - \frac{1}{(C_A)_0} = k_2 t \tag{2-50}$$

En términos de vida media se transforma en

$$t_{1/2} = k_2(C_A)_0$$
 (2-51)

Nótese que para una reacción de orden cero,  $t_{1/2}$  es directamente proporcional a  $(C_{4})_{0}$ ; para una reacción de primer orden es independiente de  $(C_{4})_{0}$ , y para una reacción de segundo orden es inversamente proporcional a  $(C_{4})_{0}$ . Los dos ejemplos más conocidos de reacciones del Tipo I son la descomposición del HI en fase gaseosa y la dimerización del ciclopentadieno en fase gaseosa o en líquida.

Al considerar el Tipo II, examinaremos primero el caso en que el orden y la estequiometría no concuerdan. Es decir, la velocidad es de segundo orden pero reaccionan **a** moles de **A** y b moles de **B** (a y b  $\neq$  1) de acuerdo a la ecuación:

## $aA + bB \rightarrow$ productos

Supóngase que al tiempo cero, el número de moles de A y de B son  $(n_A)_0 y (n_B)_0$ . Introduciendo el grado de verificación de la reacción de la **Ec.(2-7)**, el número de moles en cualquier momento esta dado por

 $n_{A} = (n_{A})_{0} - a\xi$ 

 $n_{\rm R} = (n_{\rm R})_0 - b\xi$ 

Puesto que en este capítulo consideramos que la concentración sólo cambia debido a que cambia el número de moles (esto es, que el volumen es constante), las ecuaciones anteriores pueden escribirse en términos de concentraciones como

$$C_{A} = (C_{A})_{0} - \frac{a}{V}\xi; \qquad C_{B} = (C_{B})_{0} - \frac{b}{V}\xi$$
 (A)

$$\frac{dC_A}{dt} = -\frac{a}{V}\frac{d\xi}{dt} \tag{B}$$

Sustituyendo estas expresiones en la Ec. (2-49) se obtiene

$$\frac{a}{V}\frac{d\xi}{dt} = k_2 \left[ (C_A)_0 - \frac{a}{V}\xi \right] \left[ (C_B)_0 - \frac{b}{V}\xi \right]$$
(C)

Integrando desde  $\xi = 0$  hasta l = 0, y reemplazando for  $C_A$  y  $C_B$  por medio de las Ecs. (A) y (B), se obtiene

$$\frac{1}{(C_B)_0} - \frac{b}{c} \frac{\ln \frac{C_B}{C_A}}{C_A} - \ln \frac{(C_B)_0}{(C_A)_0} = k_2 t$$
(2-52)

Y

Puesto que  $C_B$  esta relacionada con  $C_A$  por medio de las Ecs. (A)-y (B), la Ec. (2-52) puede expresarse en términos de  $C_A$  únicamente. El resultado es

$$\frac{1}{(C_B)_0 - \frac{b}{a}(C_A)_0} \ln \left\{ \frac{1}{C_A} \left[ (C_B)_0 - \frac{b}{a} \{ (C_A)_0 - C_A \} \right] \right\} - \ln \frac{(C_B)_0}{(C_A)_0} = k_2 t \qquad (2-53)$$

Si las concentraciones iniciales guardan **una** relación estequiométrica,  $(C_n)_0 = (b/a)(C_A)_0$ , y la Ec. (2-49) se transforma en

$$-\frac{dC_A}{dt} = \frac{b}{a} k_2 \left[ (C_A)_0 - \frac{a}{V} \xi \right]^2 = \frac{b}{a} k_2 C_A^2$$
(2-54)

Esta expresión de velocidad es la misma que la **Ec.** (2-48) para el Tipo 1, excepto que la constante de velocidad esta multiplicada por b/a. Por analogía con la **Ec. (2-50)**, la solución es

$$\frac{1}{C_A} - \frac{1}{(C_A)_0} = \frac{b}{a} k_2 t \tag{2-55}$$

Cuando  $(C_{a})_{o} = (C_{A})_{0}$  y a = b = 1, una reacción de segundo orden de Tipo II es idéntico al Tipo 1 y la solución esta dada por la **Ec.** (2-50).

Los datos de concentración-tiempo pueden analizarse fácilmente para determinar si se trata de una cinética de segundo orden. Para el Tipo I (o el Tipo II con proporciones iniciales de A y B estequiométricas), la **Ec.** (2-50) indica que los datos deben producir una línea recta al trazar una gráfica de  $1/C_A$  en función de t. Para el Tipo II, la **Ec.** (2-52) muestra que una gráfica de log  $C_B/C_A$  en función de t debe ser lineal. En este caso, la pendiente  $[C_{B_0} - b/a]C_A$ .  $]k_2$  será positiva o negativa, dependendo de los coeficientes estequiométricos a y b y de las concentraciones iniciales.

En el siguiente ejemplo se usan ecuaciones de velocidad de primero y segundo orden para interpretar los datos de un sistema líquido isotérmico de densidad constante.

Las Ecs. (2-42), (2-45), (2-50) y (2-53) conesponden todas ala forma  $f(C_i) = kt$ . De esta forma, y tal como lo señala Hill,<sup>26</sup> una gráfica de  $f(C_i)$  en función de t debe ser una línea recta con una pendiente igual a k. Con datos experimentales de  $C_i$  y t se puede determinar el orden conecto por medio de la determinación de cuál es la función de  $C_i$  que mejor concuerda con el requerimiento lineal.

**Ejemplo** 24. La reacción en fase líquida entre la trimetilamina y **el bromuro** de n-propilo ha sido estudiada por Winkler y **Hinshelwood**<sup>27</sup> mediante la inmersión de tubos de vidrio sellados, conteniendo los reactivos, en un **baño** de temperatura constante. Los resultados a 139.4 °C se muestran en la Tabla 2-2. Las soluciones iniciales de trimetilamina y bromuro de n-propilo en benceno a una concentración 02 molar, se mezclan, se introducen en tubos de gases que luego

Tabla 2-2

| Corrida  | t, min | Conversión, | 0% |
|----------|--------|-------------|----|
| <b>1</b> | 13     | 11.2        |    |
| 2        | 34     | 257         |    |
| 3        | 59     | 361         |    |
| 4        | 120    | 552         |    |

se sellan y se colocan en un **baño** a temperatura constante. Después de varios intervalos de tiempo, los tubos se quitan del **baño**, se enfiían para detener la reacción, y su contenido se analiza. El análisis depende del hecho que el producto, que es una sal cuaternaria de amonio, esté completamente ionizado. Por tanto, la concentración de iones bromuro puede'estimarse mediante una titulación.

A partir de esta información, determine las constantes específicas de reacción de primero y segundo órdenes,  $k_1$  y  $k_2$ , suponiendo que la reacción es irreversible dentro del rango cubierto por los datos. Use el método de integración y el de diferenciación y compare los resultados. **Que** ecuación de velocidad de reacción se ajusta mejor a los datos experimentales?

SOLUCIÓN: La reacción se puede escribir

$$N(CH_3)_3 + CH_3CH_2CH_2Br \rightarrow (CH_3)_3(CH_2CH_2CH_3)N^+ + Br$$

Para este sistema a volumen constante se pueden aplicar las Ecs. (2-44) y (2-49) para las posibilidades de primero y segundo orden. Si *T* denota a la trimetilamina y *P* al bromuro de *n*-propilo, estas expresiones de velocidad son

$$\mathbf{r} = -\frac{dC_T}{dt} = k_1 C_T \tag{A}$$

$$\mathbf{r} = -\frac{dC_T}{dt} - k_2 C_T C_p \tag{B}$$

*Método de* integración. Para el caso de primer orden, la forma integrada de la **Ec.** (A) es la **Ec.** (2-45); esto es

 $-\ln \frac{C_T}{(C_T)_0} = k_1 t \tag{C}$ 

En el caso de segundo orden los coeficientes estequiométricos son iguales y  $(C_r)_0 = (C_r)_0 = 0.1 \text{ molal.}$  Por tanto, la **Ec.** (B) se reduce a la ecuación de segundo orden de Tipo 1:

$$-\frac{dC_T}{dt} = k_2 C_T^2 \tag{D}$$

La solución integrada es la Ec. (2-50),

$$\left(\frac{1}{C_T} - \frac{1}{(C_T)_0}\right) = k_2 t \tag{E}$$

La conversión x es la fracción de reactante que se ha consumido. En este problema

 $x = \frac{(C_T)_0 - C_T}{c_T}$ 

0

$$C_T = C_{T_0}(1 - x) \tag{F}$$

Ilustraremos el calculo de  $k_1$  y  $k_2$  para la primera corrida. De la Ec. (F),

$$C_T = (C_T)_0(1 - 0.112) = 0.1(0.888)$$

Sustituyendo en la Ec. (C) se obtiene que

$$k_1 = \frac{1}{t} \ln \frac{(C_T)_0}{C_T} = \frac{1}{13(60)} \ln \frac{0.1}{0.0888} = 1.54 \times 10^{-4} \,\mathrm{s}^{-1}$$

Entonces, usando la Ec. (E) para la posibilidad de segundo orden,

$$k_{2} = \frac{1}{t(C_{T})_{0}} \left( \frac{1}{1-x} - 1 \right) = \frac{0.112}{60(13)(0.1)(1-0.112)}$$
  
= 1.63 x 10<sup>-3</sup> L/(mol g)(s) o 1.63 x 10<sup>-3</sup> m<sup>3</sup>/(mol kg)(s)

La Tabla 2-3 muestra los resultados obtenidos en forma similar para las cuatro corridas. Los valores de  $k_1$  muestran una tendencia definida respecto al tiempo, y, por tanto, el mecanismo de primer orden no explica satisfactonamente los datos cinéticos. Los valores de  $k_2$  no solamente son casi iguales, sino que las variaciones no muestran ninguna tendencia definida.

El método gráfico para aplicar el procedimiento de integración consiste en graficar la función de  $C_r$  expresada por las Ecs. (C) y (E) en función de *t*. La concentración  $C_r$  para cada intervalo de tiempo se obtene de la **Ec.** (F). Las grá-

|         |      | y el bromuro de                  | n-propilo                                                            |                                       |
|---------|------|----------------------------------|----------------------------------------------------------------------|---------------------------------------|
| Corrida | t, s | $k_1 \times \frac{10^4}{s^{-1}}$ | $k_2 \times 10^3$ ,<br>L/(mol g)(s)<br>O m <sup>3</sup> /(mol kg)(s) | C,<br>molg/L<br>omolkg/m <sup>3</sup> |
| 1       | 780  | 1.54                             | 1.63                                                                 | 0.0112                                |
| 2       | 2040 | 1.46                             | 1.70                                                                 | 0.0257                                |
| 3       | 3540 | 1.30                             | 1.64                                                                 | 0.0367                                |
| 4       | 7200 | 1.12                             | 1.71                                                                 | 0.0552                                |
|         |      |                                  | (1.67 prom.)                                                         |                                       |

Tabla 2-3 Velocidades especificas de reacción para la trimetilamina. v el bromuro de **n-propilo** 



Fig. 2-3 Gráfica de los resultados del método de integación para la reacción de la trimetilamina.

**ficas** resultantes que se muestran en la Fig. 2-3 confirman la probabilidad de la **ecuación** de segundo orden. No solamente sucede que los datos concuerdan con más precisión con el requerimiento de relación lineal, sino que hay una menor dispersión. La pendiente de la curva establece el valor de  $k_1$ . En base a la línea de segundo orden, la pendiente es

Pendiente = 
$$k_2 0.102 \text{ L/(mol g)(min)}$$
  
= 1.69 x 10<sup>-3</sup> L/(mol g)(s) o m<sup>3</sup>/(mol kg)(s)

•*Método diferencial.* Las moles de iones bromuro producidos, *B*, son iguales a las moles de trimetilamina que han **reaccionado**. Por tanto, para esta **reacción** a volumen constante,

$$C_B = (C_T)_0 - C_T$$

entonces,  $C_{\mu}$  puede calcularse a partir de los datos de conversión usando la **Ec.** (F); esto es,

$$c_{B} = x(C_{T})_{0}$$

En la Fig. 24 se muestra una gráfica de **C**<sub>a</sub> en función del tiempo. La pendiente de esta curva en cualquier punto es igual a la velocidad de reacción, puesto que

$$\mathbf{r} = -\frac{dC_T}{dt} = \frac{dC_B}{dt}$$

En la Tabla 2-4 se incluyen las pendientes determinadas en base a la curva.

Un método gráfico muy conveniente para determinar el orden de una reacción con el método diferencia1 consiste en **graficar** la forma logarítmica de la



Fig. 2-4. Concentración en función del tiempo para la reacción entre (CH<sub>3</sub>)<sub>3</sub> N y CH<sub>3</sub> CH<sub>2</sub> CH<sub>2</sub> Br.

| Concentración | md g/L         | • + 4C /4               |
|---------------|----------------|-------------------------|
| C,            | C <sub>1</sub> | $g \mod{(L)(s)}$        |
| 0.0           | 0.10           | 1.58 x 10 - 5           |
| 0.01          | 0.09           | 1.38 x 10 <sup>-1</sup> |
| 002           | 008            | 1.14 x 10 <sup>-3</sup> |
| 003           | 007            | 0.79 x 10 <sup>-5</sup> |
| 0.04          | 0.03           | 0.64 x 10 <sup>-3</sup> |
| 0.05          | 0.05           | 0.45 x 10 <sup>-5</sup> |

ecuación de velocidad. Para el caso de primer orden, la forma logarítmica de la **Ec.** (A) es

$$\log \mathbf{r} = \log k_1 + \log \mathrm{Cr} \tag{G}$$

Similarmente, si la reacción es de segundo orden, de la Ec. (D) se obtiene que

$$\log \mathbf{r} = \log k_2 + \log C_T^2 = \log k_2 + 2 \log C_T$$
(H)

Para el caso de primer orden una **gráfica** de **r** en función de log  $C_r$  debe producir una línea recta con una pendiente de 1 **.0.** Para el caso de segundo orden, el resultado debe ser una línea recta con una pendiente de 2.0, de acuerdo con la **Ec.** (H). En la Fig. 2-5 se muestra una gráfica de los datos de la Tabla 2-4. Aunque existe cierto grado de dispersión, los puntos sugieren una línea recta de pendiente aproximadamente igual **a** 2.0. Se han incluido en la gráfica líneas con pendientes de 2.0 y 1.0 con propósitos comparativos. La ecuación de la línea continua (pendiente 2.0) es

$$\log r = -2.76 + 2.0$$
 log C<sub>r</sub>

Comparado con la Ec. (H)

$$log k_2 = -2.76 k_2 = 1.73 \times 10^{-3} L/(mol g)(s)$$

Este valor concuerda bien con el resultado promedio de 1.67 ×10<sup>-3</sup>, obtenido por el método de integración.

Ambos métodos muestran que el mecanismo de segundo orden es el más factible. Sin embargo, la inadecuabilidad del mecanismo de primer orden resalta más fácilmente con el método diferencial que con el enfoque de integración. Los datos de la Fig. 2-5 no corresponden, ni siquiera aproximadamente **a** una pendiente de 1 .O, pero los valores de **k**<sub>1</sub> en la Tabla 2-3 son de la misma magnitud, y no diferen del valor promedio por más de 17%. Esto se debe **a** que el proceso de integración tiende **a** enmascarar las variaciones pequehas.

Las reacciones de tercer orden son muy poco comunes. Existen órdenes fraccionarios cuando la reacción representa una secuencia de varias etapas elementales. Los procedimientos para **establecer** el orden y las constantes de velocidad para estos casos son similares **a** los que se acaban de explicar. Los datos experimentales que sugieren ecuaciones de velocidad de orden fraccionario deben examinarse cuidadosamente en cuanto al efecto de las resistencias físicas. Algunas veces suede que estos efectos, y no la secuencia de etapas elementales, son la causa del orden fraccionario. Un ejemplo es el estudio de la hidrocloración del alcohol **láurico** con cloruro de zinc como catalizador **homogéneo**.<sup>24</sup>

<sup>&</sup>lt;sup>28</sup> H. A. Kingsley y H. Bliss, Ind. Eng. Chem., 44. 2479 (1952).



Fig. 2-5 Velocidad en función de la concentración de trimetilamina.

# $CH_3(CH_2)_{10}CH_2OH(l) + HCl(g) \rightarrow CH_3(CH_2)_{10}CH_2Cl(l) + H_2O(l)$

Esta reacción homogénea a volumen constante se llevó a cabo disolviendo el **HCl** gaseoso en un recipiente con agitación que contenía el alcohol. Los datos de concentración-tiempo resultantes podían correlacionarse con una ecuación de velocidad de orden igual a un medio con respecto a la concentración de alcohol. Sin embargo, se encontró que la constante de velocidad variaba con el flujo de gas **(HCl)** alimentado al reactor, lo que sugería que la velocidad observada dependía de la resistencia a la difusión del **HCl** disuelto en la fase líquida. Un método de **analisis** que tomaba en cuenta la resistencia a la difusión, indicó que la etapa química era probablemente de primer orden con respecto al **HCl** disuelto y de orden cero con respecto al alcohol láurico. Estas combinaciones de cinéticas intrínsecas y transferencia de masa se consideran al estudiar las reacciones heterogéneas (Cap. 10).

#### 2-10 Ecuaciones concentración-tiempo para reacciones reversibles

Para un proceso *elemental*, la **relación**<sup>29</sup> de las constantes de velocidad directa a velocidad inversa es igual a la constante de equilibrio, **Ec.** (2-15). Por tanto, la velocidad neta de relación puede expresarse en términos de una k y la constante de equilibrio. De esta forma, la expresión integrada de la velocidad puede usarse con los datos de concentración-tiempo para evaluar k, en la misma forma que para las reacciones irreversibles. Ilustraremos este procedimiento para ecuaciones de velocidad de primero y segundo orden. Primer orden. Si  $k_1$  y  $k'_1$  son las constantes de velocidad directa e inversa para el proceso elemental

 $A \neq B$ 

entonces

$$-\frac{dC_A}{dt} = k_1 C_A - k_1' C_B \tag{2-56}$$

La concentración de *B* puede expresarse en términos de *C*<sub>A</sub> por medio de un simple balance de masas. A densidad constante, y puesto que el número de moles es constante, la concentración de *B* es su concentración inicial  $(C_B)_0$  más la concentración de *A* que ha reaccionado; es decir,

$$C_{B} = (C_{B})_{0} + C_{A_{0}} - C_{A}$$
(2-57)

Combinando este resultado con la Ec. (2-56) se obtiene

$$-\frac{dC_A}{dt} = (k_1 + k_1')C_A - k_1'[(C_A)_0 + (C_B)_0]$$
(2-58)

En el equilibrio, las velocidades de reacción directa e inversa son iguales, y la **Ec.** (2-56) se transforma en

$$k_{1}(C_{A})_{eq} = k'_{1}(C_{B})_{eq}$$

$$\frac{(C_{B})_{eq}}{(C_{A})_{eq}} = K = \frac{k_{1}}{k'_{1}}$$
(2-59)

donde K es la constante de equilibrio. Eliminando  $k'_1$  de la Ec. (2-58) por medio del uso de la Ec. (2-57), se obtiene

$$-\frac{dC_A}{dt} = k_1 \frac{|K+1|}{K} C_A - \frac{1}{K} [(C_A)_0 + (C_B)_0]$$
(2-60)

Entonces, aplicando la **Ec.** (2-57) en condiciones de equilibrio para determinar  $(C_B)_{eq}$  y sustituyendo este resultado en la **Ec.** (2-59), tenemos que

$$K = \frac{(C_B)_0 + (C_A)_0 - (C_A)_{eq}}{(C_A)_{eq}}$$

0

0

$$(C_B) + (C_A)_0 = (C_A)_{eq}(K+1)$$
(2-61)

Con este valor de  $(C_B) + (C_A)_0$  podemos expresar la Ec. (2-60 en términos de  $C_A - (C_A)_{eq}$ :

 $-\frac{dC_A}{dt} = k_1 \frac{K+1}{K} [C_A - (C_A)_{eq}]$ 

0

$$-\frac{dC'_A}{dt} = k_R C'_A \tag{2-62}$$

donde

$$k_{\rm R} = \frac{k_1(K+1)}{K}$$
(2-63)

Y

$$C'_{\mathcal{A}} = C_{\mathcal{A}} - (C_{\mathcal{A}})_{eq} \tag{2-64}$$

La **Ec.** (2-62) es similar a la **Ec.** (2-44) para una reacción irreversible, por lo que la forma integrada es **análoga** a la **Ec.** (2-45); es decir,

$$-\ln \frac{C_{A} - (C_{A})_{eq}}{(C_{A})_{0} - (C_{A})_{eq}} = k_{R} t$$
(2-65)

Si se traza una gráfica de datos experimentales concentración-tiempo como parte izquierda de la **Ec**. (2-65) en función de *t*, el resultado es una línea recta con una pendiente  $k_{R}$ . Cuando se conoce la constante de equilibrio,  $k_{1}$  puede evaluarse con la **Ec**. (2-63). Nótese que (C<sub>4</sub>), está determinada solamente por *K* y las concentraciones iniciales por medio de la **Ec**. (2-61).

Algunos ejemplos de reacciones reversibles de primer orden son las **isomerizaciones** cistrars en fase gascosa, las isomerizaciones en diversos tipos de sistemas de hidrocarburos y la racemización de las glucosas  $\alpha y \beta$ . Un ejemplo de una reacción catalítica es la conversión orto-para del hidrógeno sobre un catalizador de níquel. Esta reacción se usa para ilustrar otras formas de la **Ec.** (2-62) en el siguiente ejemplo.

**Ejemplo** 2-5. La reacción de orto-hidrógeno o para-hidrógeno ha sido estudiada a -196 **°C** y presión constante en un reactor de flujo, con un catalizador de níquel sobre  $Al_2O_3$ .<sup>30</sup> Los datos de velocidad pueden explicarse con una expresión de la forma siguiente:

$$\mathbf{r} = k(y_{eq} - y)_p \tag{A}$$

donde  $y_p$  es la fracción molar del para-hidrógeno. Demuestre que esta expresión se deriva de la ecuación de velocidad reversible de primer orden (2-62).

solución. La reacción es

30 N. Wakao, P. W. Selwood, y J. M. Smith, AIChE J., 8. 478 (1962).

Cinética química 101

$$O - H_2 \neq p - H_2$$

por lo que  $C_A$  en la Ec. (2-62) se refiere a la concentración de orto-hidrógeno. Suporiendo que el hidrógeno sea un gas ideal a las condiciones de la reacción y que P sea la presión total, se obtiene que

$$C_{\mathcal{A}} = \frac{P}{R_{g}T} y_0 = \frac{P}{R_{g}T} (1 - y_R) \tag{B}$$

además,

$$(C_A)_{eq} = \frac{P}{R_g T} (1 - y_{eq})_p$$

Sustituyendo estos resultados en la **Ec.** (2-62) y usando las Ecs. (2-63) y (2-64) se obtiene

$$\frac{dC_A}{dt} r = \frac{k_1(K+1)}{K} \frac{P}{R_g T} (y_{eq} - y)_p \tag{C}$$

La Ec. (C) es equivalente a la (A), y

$$k = \frac{k_1(K+1)P}{KR_aT} \tag{D}$$

Segundo orden. Para una reacción reversible de segundo orden, donde la estequiometría es

#### $A + B \neq C + D$

la ecuación de velocidad sera

$$-\frac{dC_A}{dt} = k_2 C_A C_B - k'_2 C_c C_D = k_2 \left[ C_A C_B - \frac{1}{K} C_c C_D \right]$$
(2-66)

aonde *K* es la constante de equilibrio. Para expresar todas las concentraciones en téminos de una variable, podrámos usar el *gnado de verificación de la reacción,*  $\xi$ , como lo hicimos en la Sec. 2-9. Para un sistema de volumen constante resulta más simple usar una concentración como variable. Supóngase que inicialmente sólo están presentes *A* y *B* en concentraciones de (*C*, ), y (*C*<sub>0</sub>). Se selecciona la variable *C*. Las otras concentraciones en términos de *C*, son

$$C_A = (C_A)_0 - C_c$$
$$C_B = (C_B)_0 - C_c$$
$$C_D = C_c$$

#### 102 Ingeniería de la cinética química

Sustituyendo estas ecuaciones de concentración en la Ec. (2-66) se obtiene

$$\frac{1}{k_2} \frac{dC_c}{dt} = [(C_A)_0 - C_c][(C_B)_0 - C_c] - \frac{1}{K} C_c^2$$
(2-67)

Que puede escribirse como

$$\frac{1}{k_2}\frac{dC_c}{dt} = \alpha + \beta C_c + \gamma C_c^2$$
(2-68)

donde

$$\alpha = (C_A)_0 (C_B)_0$$
  

$$\beta = -\left[ (C_A)_0 + (C_B)_0 \right]$$
  

$$\gamma = 1 - \frac{1}{K}$$
(2-69)

La resolución de la Ec. (2-68) con  $C_t = 0$  cuando t = 0, es

$$\frac{1}{q^{1/2}} \ln \frac{2\gamma C_c / (\beta - q^{1/2}) + 1}{2\gamma C_c / (\beta + q^{1/2}) + 1} = k_2 t$$
(2-70)

donde,

$$q = \beta^2 - 4\alpha\gamma \tag{2-71}$$

Cuando se conocen las concentraciones iniciales y la constante de equilibrio,  $\alpha$ ,  $\beta$  y  $\gamma$  pueden evaluarse sin problemas. Entonces, los datos experimentales de concentración-tiempo, por ejemplo, para el reactante A [nótese que  $C_{c} = (C_{a})_{b} - C_{a}$ ], son suficientes para graficar la parte izquierda de la Ec. (2-70) en función de t. Si la ecuación de velocidad de segundo orden es satisfactoria, se obtendrá una línea recta con una pendiente igual a  $k_{2}$ . Para otras formas de ecuaciones de velocidad y diferentes condiciones iniciales, el procedimiento de integración puede ser más difícil. Por otra parte, si las concentraciones estequiométricas iniciales son aplicables en cinéticas de segundo orden, las Ecs. (2-70) y (2-71) se simplifican. El Ej. 26 ilustra este caso. En este ejemplo se usan tanto el método de integración con las Ecs. (2-70) y (2-71), como el método diferencial, para analizar los datos experimentales.

El desarrollo para reacciones reversibles corresponde a etapas elementales, pues se usa la relación K = k/k' para eliminar la constante de velocidad en dirección inversa. Para reacciones no elementales, esta relación sólo es válida cuando los datos experimentales son de naturaleza tal que existen condiciones muy cercanas al equilibrio para todas las etapas individuales (véase la **Sec.** 2-7).

**Ejemplo 2-6<sup>31</sup>** La reacción entre el **yoduro** de metilo y la dimetil-p-toluidina forma en solución de nitrobenceno una sal cuaternaria de amonio ionizada. **Es-**

31 De K. J. Laidler, "Chemical Kinetics," McGraw-Hill Book Company, New York, 1950.

ta reacción puede estudiarse cinéticamente en la misma forma que la reacción de la trimetilamina considerada en el Ej. 2-4. Los datos de la Tabla 2-6 se obtuvieron empezando con una solución inicial que contiene **yoduro** de metilo y dimetil-p-toluidina a una concentración de 0.05 mol g/L.

En vista de los resultados del Ej. 2-4, y suponiendo que la constante de equilibrio para esta reacción es 1.43, **cuál** ecuación de velocidad se ajustará mejor a los datos experimentales obtenidos?

SOLUCIÓN. La reacción puede escribirse como sigue:

$$CH_3I + N-R \rightleftharpoons CH_3 - N + -R + I^-$$

Si se supone que es de segundo orden y reversible, la  $E_c$  (2-66) es aplicable. Expresando la velocidad en términos de la concentración de **yoduro** se obtiene

$$\frac{dC_1}{dt} = k_{\mathscr{B}} C_M C_T - k_{\mathscr{B}}' C_1 C_N \tag{A}$$

Las concentraciones iniciales de los reactantes son iguales y la de los productos son **cero**;  $\mathbf{S}$  is considera que C, es la concentración de **yoduro** y que  $C_{\mathbf{M}}$  es la concentración de cualquiera de los reactantes, la **Ec.** (2-67) se transforma en

$$\frac{1}{k_2}\frac{dC_1}{dt} = [(C_M)_0 - C_1]^2 - \frac{1}{K}C_1^2$$
(B)

*Método de integración.* La solución de la **Ec.** (B) está dada por las Ecs. (2-70) y (2-71), donde  $C_{c} = C$ , y

$$\alpha = (C_M)_0^2$$
  

$$\beta = -2(C_M)_0$$
  

$$\gamma = \frac{K - 1}{K}$$
  

$$4 = 4(C_M)_0^2/K$$

Sustituyendo estos valores en la Ec. (2-70) y simplificando

| Comida | t, min | Fracción de toluidina<br>que ha reaccionando |  |
|--------|--------|----------------------------------------------|--|
| 1      | 10.2   | 0.175                                        |  |
| 2      | 265    | 0.343                                        |  |
| 3      | 360    | 0.402                                        |  |
| 4      | 780    | 0523                                         |  |

### Tabla 2-5

$$\frac{2k_2(C_M)_0}{K^{1/2}}t = \ln\frac{(C_M)_0 + C_1(K^{-1/2} - 1)}{(C_M)_0 C_1(K^{-1/2} + 1)}$$
(C)

Los datos **están** dados como fracción de x de la toluidina **(o, en este** ejemplo, de **yoduro** de metilo) que ha reaccionado. Por tanto,  $C_{r} = x(C_{r})_{0}$ . Entonces la **Ec.** (C) se transforma en

$$k_{2} = \frac{K^{1/2}}{2(C_{M})_{0}} \ln \frac{1 + x(K^{-1/2} - 1)}{1 - x(K^{-1/2} + 1)}$$
(D)

Sustituyendo los valores numéricos de K y  $(C_{M})_0$  se obtiene la siguiente expressión que relaciona a x y t:

$$k_2 = \frac{1.43^{1/2}}{2(0.05)t} \ln \frac{1 - 0.165x}{1 - 1.835x}$$

Esta expresión y los datos de la Tàbla 2.5 pueden usarse para calcular el valor de  $k_2$  para cada corrida. Los resultados se muestran en la Tabla 2-6.

Resulta interesante analizar los valores de  $k_2$  evaluados con la suposición de que la reacción es irreversible, y que se muestran en la última columna de la tabla. Estos valores se calcularon con la **Ec.** (2-50); por ejemplo,

$$k_2 t = \frac{C_1}{(C_M)_0 [(C_M)_0 - C_1]}$$

La tendencia uniforme de los valores de  $k_2$  indica que la suposición de ineversibilidad no es adecuada.

En los estudios de datos de velocidad, las tendencias de k son más significativas que las variaciones absolutas. Las tendencias sugieren que el orden supuesto es discutible, mientras que las variaciones son indicativas de errores en los datos experimentales. Claro está que si la precisión de los datos es baja, las variaciones enmascararan las tendencias de los valores de k calculados.

*Método diferencial.* Si se considera que la velocidad de la reacción es  $dC_1/dt$ , se puede escribir la **Ec**.(B) en forma logarítmica como

$$\log \mathbf{r} = \log \frac{dC_1}{dt} = \log k_2 + \log \left\{ (C_M)_0 - C_1 \right\}^2 - \frac{1}{K} C_1^2 \right\}$$
(E)

| Corrida | θ, s  | k2, L/(mol g)(s)        | k, (despreciando la reacción inversa) |
|---------|-------|-------------------------|---------------------------------------|
| 1       | 612   | 705 x 10 <sup>-3</sup>  | 6.93 x 10 <sup>-3</sup>               |
| 2       | 1,590 | 7.06 x 10 <sup>-3</sup> | 6.57 x 10 <sup>-3</sup>               |
| 3       | 2,160 | 7.06 1 10 - 3           | 6.23 x 10 <sup>-3</sup>               |
| 4       | 4,680 | 7.97 x 10 <sup>-3</sup> | 4.68 x 10 <sup>-3</sup>               |

Tabla 2-6





Podemos evaluar la velocidad diferenciando los datos de C, en función de t, para después comparar los resultados con la forma reversible de segundo orden de la **Ec**. (E). Introduciendo valores numéricos:

$$\log r = \log k_2 + \log((0.05 - C_1)^2 - 0.70C_1^2)$$
(F)

Si los datos obedecen la cinética de segundo orden, la **Ec.** (F) muestra que una gráfica logarítmica de r en función de  $[(0.05 - C_1)^2 - 0.70C_1^2]$  debe producir una línea recta con una pendiente unitaria.

La Fig. 2-6 muestra una gráfica de C, en función de t. Las pendientes de esta curva corresponden a los valores de velocidad que se incluyen en la Tabla 2-7. Se muestra también una gráfica de la **Ec. (F)**. Obsérvese que los cuatro primeros puntos establecen una línea con una pendiente cercana a la unidad, tal como lo requieren los mecanismos de segundo orden. El último punto se desvía de la línea, en la misma forma en que el valor de k para este punto, obtenido por el método de integración, no concordaba con los demás valores.

| t, S  | C <sub>1</sub><br>mol g/L | $\frac{dC_1}{dt}$       | $\log \frac{dC_1}{dt}$ | $(0.05 - C_1)^2 - 0.70C_1^2$ | $\log \left\{ (0.05 - C_1)^2 \\ 0.70C_1^2 \right\}$ |
|-------|---------------------------|-------------------------|------------------------|------------------------------|-----------------------------------------------------|
| 0     | 0                         | 1.93 x 10 <sup>-5</sup> | -4.71                  | 250 x 10 <sup>-4</sup>       | -2.60                                               |
| 612   | 0.00875                   | $1.12 \times 10^{-5}$   | -4.95                  | 16.5 x 10 <sup>-4</sup>      | -2.78                                               |
| 1,590 | 0.0171                    | 0.62 x 10 <sup>-5</sup> | <del>52</del> 0        | 875 x 10 <sup>-4</sup>       | 3.05 🗕                                              |
| 2,160 | 0.0201                    | 0.42 × 10 <sup>-5</sup> | -5.37                  | 6.13 x 10 <sup>-4</sup>      | -3.21                                               |
| 4,680 | 0.0261                    | 0.13 x 10 <sup>-5</sup> | 5.89                   | 0.96 x 10 <sup>-4</sup>      | -4.01                                               |

Las ecuaciones complejas de las reacciones reversibles pueden evitarse llevando a cabo mediciones antes de que se haya verificado una gran parte de la reacción. En estas condiciones, las concentraciones de los productos serán **pequeñas** haciendo que la velocidad inversa sea insignificante. Entonces, es posible analizar los datos como si el sistema fuera irreversible, para determinar la constante de la velocidad directa. Con este resultado y la constante de equilibrio (para una reacción elemental), se puede obtener la constante de velocidad para la reacción inversa. Este método de *velocidad inicial* se usa con frecuencia para simplificar los estudios de cinética. Además del hecho de que se elimina la reacción inversa, generalmente se conoce la composición del sistema reaccionante<sup>4</sup> con más precisión al principio que después de un tiempo transcurrido. Esto se debe a que las composiciones después de ciertos **periodos** suelen evaluarse con análisis experimentales limitados y la suposición de que se han verificado ciertas reacciones.

En las reacciones no elementales, las constantes de velocidad a partir de datos de condiciones iniciales difieren de los valores de k que se obtienen en etapas posteriores, tal como ya se explicó en la Sec. 2-7. Al comparar las constantes de velocidad y los órdenes de reacción obtenidos con diferentes grados de reacción, se pueden deducir conclusiones acerca del mecanismo de reacción. Cuando la ecuación de velocidad, determinada por medio de su relación con la concentraciór en condiciones iniciales, es diferente a la que se determina con conversiones fini is, e lo indica un cambio originado por la presencia de un intermediario o productos estables. Cuando el orden de una reacción determinada con datos a con versiones significativas es inferior al orden en condiciones iniciales, la velocidad está disminuyendo menos rápidamente con el tiempo de lo que era de esperarse. Esto sugiere que los productos de la reacción de alguna manera aceleran la velocidad. A estos sistemas se les llama autocatalíficos. Por otra parte, cuando el orden a conversiones significativas es mayor que el que establecen las condiciones iniciales, los productos de la reacción están inhibiéndola.<sup>32</sup>

El Ej. 2-7 ilustra el método de análisis de velocidad inicial.

**Ejemplo** 2-7. La interpretación de datos cinéticos para **reacciones** gaseosas es similar a la empleada para sistemas líquidos. El análisis de una ecuación reversible se ilustra por la descomposición, en fase de vapor, del **yoduro** de hidrógeno.

## $2HI \rightarrow H_2 + I_2$

Esta reacción ha sido cuidadosamente estudiada por diversos investigadores,<sup>33</sup> y se considera generalmente como uno de los ejemplos más seguros de reacción de segundo orden, por lo menos a presiones bajas. Los valores de equilibrio para la fracción x de HI descompuesto, pueden representarse con precisión mediante la ecuación de Bodenstein,

<sup>32</sup> M. Letort, Bull. Soc. Chim. France, 9, 1 (1942).

 <sup>&</sup>lt;sup>33</sup> M. Bodenstein, Z. Physik Chem., 13, 56 (1894); Z. Physik Chem., 22, 1 (1897); Z. Physik Chem., 29, 295 (1898); H. A. Taylor, J. Phys. Chem., 28, 984 (1924); G. B. Kistiakowsky, J. Am. Chem. Soc., 50, 2315 (1928).

$$\mathbf{x}_{e0} = 0.1376 + 7.22 \text{ x } 10^{-5}t + 2.576 \text{ x } 10^{-7}t^2$$
  $t = {}^{\circ}\text{C}$ 

Kistiakowsky usó en un método experimental estático para estudiar la reacción. Dentro de tubos de vidrio se colocó **yoduro** de hidrógeno, se sellaron los tubos y se sumergiaron en **baños** de temperatura constante por varios **intervalos** de tiempo, después se sacaron los tubos, se enfiiaron y los contenidos se analizaron para los tres compuestos posibles. La presión inicial del HI (y, por tanto, la concentración inicial) y el **tamaño** del bulbo de reacción, se variaron en un amplio intervalo. En la Tabla 2-8 se dan los datos obtenidos a una temperatura promedio de 321.4 °C.

A partir de esta información, estime la constante específica de reacción [L/(mol g)(s)] para las reacciones directa e inversa, siendo que ambas pueden considerarse como de segundo orden.

Solución: El grado de reacción indicado por el HI descompuesto, es siempre bajo. La serie de corridas constituyen los datos de *velocidad inicial,* con cada corrida correspondiendo a una diferente concentración de HI. Se **deberán** obtener resultados razonablemente precisos ignorando la reacción inversa. Esto se comprobará incluyendo primero el **pequeño** efecto de la reacción inversa.

Si la velocidad se basa en la concentración de yodo, la **Ec.** (2-67) se transforma en

$$\frac{1}{k_2}\frac{dC_1}{dt} = [(C_{\rm HI})_0 - 2C_{\rm I_2}]^2 \sim \frac{1}{K}(C_{\rm I_2})^2$$

| Tabla | 2-8 |
|-------|-----|
|-------|-----|

| Corrida | <i>t</i> , s | % HI<br>descompuesto | Volumen<br>del bubo<br>de reacción. <b>cm³</b> | (CHI)<br>moles g/L |
|---------|--------------|----------------------|------------------------------------------------|--------------------|
| 1       | 82,800       | 0.826                | 51.38                                          | 0.02339            |
| 2       | 172,800      | 2.567                | 59.80                                          | 0.03838            |
| 3       | 180,000      | 3.286                | 51.38                                          | 0.04333            |
| 4       | 173,100      | 3.208                | 51.38                                          | 0.04474            |
| 5       | 81,000       | 2.942                | 7.899                                          | 0.1027             |
| 6       | 57,560       | 2.670                | 7.899                                          | 0.1126             |
| 1       | 61,320       | 4.499                | 7.899                                          | 0.1912             |
| 8       | 19,200       | 2.308                | 7.899                                          | 0.3115             |
| 9       | 18,000       | 2.202                | 7.899                                          | 0.3199             |
| 10      | 16,800       | 2.071                | 7.899                                          | 0.3279             |
| 11      | 17,400       | 2.342                | 7.899                                          | 0.3464             |
| 12      | 17,700       | 2.636                | 7.899                                          | 0.4075             |
| 13      | 18,000       | 2.587                | 7.899                                          | 0.4228             |
| 14      | 23,400       | 4.343                | 7.899                                          | 0.4736             |
| 15      | 6,000        | 2,224                | 3.28                                           | 0.9344             |
| 16      | 5,400        | 1.903                | 0.778                                          | 0.9381             |
| 17      | 8,160        | 3.326                | 0.781                                          | 1.138              |
| 19      | 5;400        | 2.741                | 0.713                                          | 1.231              |
Integrando la ecuación de velocidad con la condición inicial de  $C_1 = 0$ a t = 0, el resultado es muy similar a la **Ec.** (C) del ejemplo anterior:

$$\frac{2k_2(C_{\rm HI})_0}{K^{1/2}}t = \ln\frac{(C_{\rm HI})_0 + C_{\rm I_2}(K^{-1/2} - 2)}{(C_{\rm HI})_0 - C_{\rm I_2}(K^{-1/2} + 2)}$$
(A)

La constante de equilibrio está relacionada a las concentraciones de equilibrio por medio de

$$K = \left(\frac{C_{I_2}C_{H_2}}{C_{H_1}^2}\right)_{eq}$$

Si la fracción de HI descompuesto es x,

$$C_{1_2} = C_{H_2} = 1/2(C_{HI})_0 x$$
  
 $C_{HI} = (C_{HI})_0(1 - x)$ 

Por lo que

$$K = \frac{1}{4} \frac{x_{\rm eq}^2}{(1 - x_{\rm eq})^2}$$

A partir de la expresión dada para x, a 321.4 "C,

 $\mathbf{x_{eq}} = 0.1376 + 7.221 \text{ x } \mathbf{10^{-5}(321.4)} + 2.576 \text{ x } \mathbf{10^{-7}(321.4)^2} = 0.1873$ De donde

$$K = \frac{1}{4} \frac{(0.1873)}{(1 - 0.1873)^2} = 0.0133$$

Sustituyendo este valor de K en la Ec. (A) e introduciendo la fracción descompuesta, se obtiene

$$k_{2} = \frac{1}{2(8.67)(C_{\rm HI})_{0}t} \ln \frac{(C_{\rm HI})_{0} + \frac{1}{2}(C_{\rm HI})_{0}(8.67 - 2)x}{(C_{\rm HI})_{0} - \frac{1}{2}(C_{\rm HI})_{0}(8.67 + 2)x}$$

$$k_{2} = \frac{1}{2(8.67)(C_{\rm HI})_{0}t} \ln \frac{1 + 3.335x}{1 - 5.335x}$$
(B)

Los datos experimentales para x pueden usarse directamente en la **Ec.(B)** para calcular valores de la velocidad específica de reacción  $k_2$ . Sin embargo, es más útil otra forma de expresión cuando los valores de x son muy bajos, como en el presente caso (el **máximo** valor de x es de 0.04499 para la conida 7). La **Ec.** (B) puede escribirse en la forma

Cinética química 109

Ch es

$$k_2 = \frac{1}{2(8.67)(C_{\rm HI})_0 t} \ln \left( 1 + \frac{8.67x}{1 - 5.335x} \right)$$
(C)

El uso de la Ec. (C) puede ilustrarse con la corrida 1:

$$k_2 = \frac{1}{2(8.67)(0.02339)(82\,800)} \ln\left(1 + \frac{8.67(0.00826)}{1 - 5.335(0.00826)}\right)$$
  
= 2.14 x 10<sup>-6</sup> L/(mol g)(s)

Los resultados de las demás corridas se resumen en la Tabla 2-9. El valor promedio de  $k_2$  es 1.99 x 10<sup>-6</sup>. Para la reacción inversa

$$k'_2 = \frac{k_2}{K_*} = \frac{1.99 \times 10^{-6}}{0.0133} = 1.50 \times 10^{-4} \text{ L/(molg)(s) o m^3/(mol kg)(s)}$$

Si se desprecia la reacción inversa, la ecuación de velocidad en términos de

$$\frac{dC_{1}}{dt} = k_2 C_{H1}^2 = k_2 [(C_{H1})_0 - 2C_{1_2}]^2$$

Integrando con  $C_{h} = Oa t = 0$  se obtiene

$$k_2 = \frac{1}{2t} \left[ \frac{1}{(C_{\rm HI})_0 - 2C_{\rm l_2}} - \frac{1}{(C_{\rm HI})_0} \right]$$

| Tabla | 2 | 9 |
|-------|---|---|
|-------|---|---|

| Corrida | Conversión | k <sub>2</sub> × 10 <sup>6</sup> ,<br>L/(s)(mol g) |
|---------|------------|----------------------------------------------------|
| 1       | 0.00826    | i.14                                               |
| 2       | 0.02567    | 2.01                                               |
| 3       | 0.03286    | 2.20                                               |
| 4       | 0.03208    | 2.17                                               |
| 5       | 0.02942    | 1.92                                               |
| 6       | 0.02670    | 2.08                                               |
| 1       | 0.04499    | 2.04                                               |
| 8       | 0.02308    | 1.99                                               |
| 9       | 0.0202     | 1.80                                               |
| 10      | 0.0207 1   | 1.77                                               |
| 11      | 0.02342    | 2.00                                               |
| 12      | 0.02636    | 1.90                                               |
| 13      | 0.02587    | 1.75                                               |
| 14      | 0.04343    | 2.08                                               |
| 15      | 0.02224    | 2.05                                               |
| 14      | 0.01903    | 1.93                                               |
| 17      | 0.03326    | 1.87                                               |
| 19      | 0.02741    | 2.15                                               |

o bien, en términos de la conversión de HI,

$$k_2 = \frac{1}{2t(C_{\rm HI})_0} \left(\frac{x}{1-x}\right)$$
 (D)

Usando datos de la corrida 1:

$$k_2 = \frac{1}{2(82800)(0.02339)} \left[ \frac{0.00826}{1 - 0.00826} \right]$$
  
= 2.15 x 10<sup>-6</sup>L/(mol g)(s)

Este valor es casi igual al de  $k_2$  obtenido con la **Ec.** (C). Para corridas con conversiones más altas, la desviación sería algo mayor, pero en todos los casos, la reacción inversa no es significativa para estos datos develocidad esencialmente inicial.

En la Tabla 2-10 se resumen las formas integradas de las ecuaciones de velocidad desarrolladas en las **Secs.** 2-9 y 2-10.

| Reactión                | Orden           | Ecuación de velocidad                                  | Formas integradas                                                                                                                                         |
|-------------------------|-----------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A \rightarrow B$       | Cera            | Reactions reversibles $\frac{-dC}{dt} = k_0$           | $C_A = (C_A)_0 - k_0 t$                                                                                                                                   |
| $A \rightarrow B$       | Primero         | Reactions ineversibles<br>$-\frac{dC_A}{dt} = k_1 C_A$ | In $\frac{C_{\star}}{(C_{\star})_{0}} = -k_{1}t$ $t_{1/2} = \frac{1}{k_{1}} \ln 2$                                                                        |
| $A + A \rightarrow P$   | Segundo, tipo I | $-\frac{dC_A}{dt} = k_2 C_A^2$                         | $\frac{1}{C_A} - \frac{1}{(C_A)_0} = k_2 t$ $\frac{1}{1/2} = \frac{1}{k_1(C_A)_0}$                                                                        |
| $aA + bB \rightarrow P$ | Segundo tipo II | $-\frac{dC_A}{dt} = k_2 C_A C_B$                       | $\frac{1}{(C_B)_0 = (b/a)(C_A)_0}$ $\ln\left[\frac{1}{C_A}\left (C_B)_0 - \frac{b}{a}[(C_A)_0 - C_A]\right \right]$ $-\ln\frac{(C_B)_0}{(C_A)_0} = k_2 t$ |

### Tabla 2-10 Ecuaciones de velocidad para reacciones simples.

| Reacción                              | Orden                                       | Ecuación de velocidad               | Formas integradas                                                                                                                       |
|---------------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                             | Reacciones reversibles              | 3                                                                                                                                       |
| $A \rightleftharpoons B$              | Primero 🔁 Primero                           | $-\frac{dC_A}{dt} = k_1 C_A$        | $\frac{C_A - (C_A)_{eq}}{(C_A)_0 - (C_A)_{eq}} = e^{-k_B t}$                                                                            |
|                                       |                                             | $-k_1'C_B$                          | $k_R = \frac{k_1(K+1)}{K}$                                                                                                              |
|                                       |                                             |                                     | $(C_A)_{eq} = \frac{(C_B)_0 + (C_A)_0}{K+1}$                                                                                            |
| <i>A</i> + <i>B</i> <b>≠</b> <i>C</i> | $C + D$ Segundo $\rightleftharpoons$ Segund | $o - \frac{dC_A}{dt} = k_2 C_A C_B$ | $k_2 q^{1/2} t = \ln \frac{\langle 2 \gamma C_c / (\beta - q^{1/2}) \rangle + 1}{\langle 2 \gamma C_c / (\beta + q^{1/2}) \rangle + 1}$ |
|                                       |                                             | $-k_1C_cC_p$                        | $C_{c} = (C_{A})_{0} - C_{A}$                                                                                                           |
|                                       |                                             |                                     | $\alpha$ , $\beta$ , $\gamma$ , y definidas por la Ec. (2-69)                                                                           |

### Tabla 2-10 (Continuación).

# ANALISIS DE ECUACIONES DE VELOCIDAD COMPLEJAS

En un sistema reaccionante *complejo*, los productos estables (en contraste con los intermediarios inestables) son producidos por más de una reacción. Algunos de los productos pueden ser más deseables que otros. Por ejemplo, en la oxidación con aire del etileno, el producto deseado es óxido de etileno, pero también se presenta una oxidación completa a bióxido de carbono y agua. El factor de funcionamiento más importante es la velocidad de producción del óxido de etileno y su pueza en los productos de la reacción, en vez de la cantidad total de etileno que haya reacciona-do. Para caracterizar este funcionamiento se utilizan dos parametros: rendimiento y selectividad. El *rendimiento* de un producto específico se define como la fracción de la *velocidad* de formación de un producto a la de otro. Con varios productos existe un valor de selectividad para cada par de ellos. La *selectividad total* o integrada es la relación total, es de-cir, la fracción total de reactante convertido en todos los productos a.

Como ilustración de estos términos considérese el sistema reaceionante simultáneo

$$\begin{array}{c} k_1 \\ A \rightarrow B \\ k_2 \searrow \\ C \end{array} \tag{2-72}$$

Supóngase que la conversión total de A es  $x_r$ , que **consiste** de la fracción  $x_B$  del **reac**tante A convertido en B, y de la fracción  $x_c$  convertida en C. El *rendimiento* de B es simplemente  $x_B$  y el de Ces  $x_c$ . La cantidad formada de un producto es proporcional al rendimiento. Por tanto, la *selectividad total* de B es la reacción de los rendimientos de  $B \cdot y C$ ;

$$S_o = \frac{x_B}{x_C} \tag{2-73}$$

Si ambas reacciones son de primer orden e inevensibles, la selectividad de punto es

$$S_{p} = \frac{dC_{B}/dt}{dC_{C}/dt} - \frac{k_{1}C_{A}}{k_{2}C_{A}} = \frac{k_{1}}{k_{2}}$$
(2-74)

Con la restricción de densidad constante, la cantidad formada de producto es proporcional a su concentración. Por tanto, la selectividad total también puede escribirse como

$$S_{o} = \frac{C_{B}}{C_{C}}$$
(2-75)

La foma simple de la **Ec.** (2-74) muestra que los cálculos de selectividad y rendimiento pueden llevarse a cabo ventajosamente dividiendo la velocidad de una reacción entre la de la otra, con lo cual se elimina el factor tiempo. Puesto que el rendimiento y la selectividad suelen ser más importantes que la conversión total para los sistemas reaccionantes complejos, la siguiente sección discute este procedimiento con todo detalle. Las posibles combinaciones de reacciones simultáneas, paralelas y consecutivas, son muy grandes. En la **Sec.** 2-11 se analizan algunos casos irreversibles de primer orden para ilustrar el método. Para órdenes de reacción más complejos puede seguirse el mismo procedimiento, pero no existen soluciones explícitas para **tales** casos.

#### 2-11 Reacciones complejas de primer orden

Considérense primero las reacciones simultáneas descritas por la Ec. (2-72). Las velocidades de formación de los componentes están dadas por las tres siguientes ecuaciones:

$$-\frac{dC_A}{dt} = (k_2 + k_2)C_A$$
(2-76)

$$\frac{dC_B}{dt} = k_1 C_A \tag{2-77}$$

$$\frac{dC_e}{dt} = k_2 C_A \tag{2-78}$$

Nuestro objetivo consiste en integrar estas ecuaciones para establecer  $C_n$  y  $C_c$  para cualquier valor de  $C_A$ . De esta forma, todos los rendimientos y las selectividades pueden obtenese por medio de ecuaciones como la (2-73). En este ejemplo simple, la **Ec.** (2-76) puede integrarse inmediatamente para obtener  $C_A = f(t)$ . Este resultado, usado en las Ecs. (2-77) y (2-78), permite integrar estas dos ecuaciones, por lo que se pueden conocer  $C_A$  y  $C_c$  en función del tiempo. Sin embargo, en casos más

complicados (véase el Ej. **2-9)**, la integración con respecto al tiempo no es una labor fácil. Por consiguiente, la solución se obtiene dividiendo las Ecs. (2-77) y (2-78) entre la **(2-76)**, para eliminar el tiempo:

$$\frac{dC_B}{dC_A} = -\frac{k_1}{k_1 + k_2}$$
(2-79)

$$\frac{dC_c}{dC_A} = -\frac{k_2}{k_1 + k_2}.$$
(2-80)

Si las Ecs. (2-79) y (2-80) se integran con las condiciones  $\neq 0$ ,  $C_A = (C_A)_0$  y  $C_B = C_c = 0$ , los rendimientos de **B** y C son

$$x_{B} = \frac{C_{B}}{(C_{A})_{0}} = \frac{k_{1}}{k_{1} + k_{2}} \left( 1 - \frac{C_{A}}{(C_{A})_{0}} \right) = \frac{k_{1}}{k_{1} + k_{2}} x_{t}$$
(2-81)

$$x_{c} = \frac{C_{c}}{(C_{A})_{0}} = \frac{k_{2}}{k_{1} + k_{2}} \left( 1 - \frac{C_{A}}{(C_{A})_{0}} \right) = \frac{k_{2}}{k_{1} + k_{2}} x_{t}$$
(2-82)

donde  $X_{a}$  es la conversión total de A a B y a C.

A partir de las Ecs. (2-81) y (2-82), la selectividad total de B es

$$S_o = \frac{x_B}{x_C} = \frac{k_1}{k_2}$$
 (2-83)

La selectividad de punto dada por la **Ec.** (2-74) para reacciones simultheas de primer orden también es igual a  $k_1/k_2$ . Aunque para este tipo de sistema de primer orden, las selectividades de punto y total son idénticas, las dos selectividades difieren cuando se trata de reacciones más complejas.

Considérese ahora un conjunto de reacciones consecutivas,

$$A \to B \to D$$

y tômese  $C_B = C_D = Oy C_A = (C_A)_0$  a l = 0. Las velocidades son

$$\frac{dC_A}{dt} = -k \, \mathcal{I} C_A \tag{2-84}$$

$$\frac{dC_a}{dt} = k_1 C_A - k_3 C_B \tag{2-85}$$

$$\frac{dC_{\rm D}}{dt} = k_3 C_B \tag{2-86}$$

Dividiendo las Ecs. (2-85) y (2-86) entre la (2-84) se obtiene

$$\frac{dC_B}{dC_A} = -1 + \frac{k_3 C_B}{k_1 C_A} \tag{2-87}$$

$$\frac{dC_B}{dC_A} = -\frac{k_3 C_B}{k_1 C_A} \tag{2-88}$$

Puesto que la **Ec.** (2-87) es una ecuación diferencial lineal de primer orden, puede resolverse analíticamente. Con la condición inicial **señalada**, el resultado puede expresarse en términos del rendimiento de **B**.

$$x_{B} = \frac{C_{B}}{(C_{A})_{0}} = \frac{k_{1}}{k_{1} - k_{3}} \left\{ \left( \frac{C_{A}}{(C_{A})_{0}} \right)^{k_{3}/k_{1}} - \frac{C_{A}}{(C_{A})_{0}} \right\}$$
(2-89)

Esta expresión para  $C_{B}$  puede introducirse en la Ec. (2-88). Integrando entonces la Ec. (2-88) se obtiene

$$x_{D} = \frac{C_{D}}{(C_{A})_{0}} = \frac{k_{1}}{k_{1} - k_{3}} \left\{ 1 - \left(\frac{C_{A}}{(C_{A})_{0}}\right)^{k_{3}/k_{1}} \right\} - \frac{k_{3}}{k_{1} - k_{3}} \left( 1 - \frac{C_{A}}{(C_{A})_{0}} \right)$$
(2-90)

Con estas dos expresiones se ve que la selectividad total  $x_B/x_D$  depende de la fracción sin convertir,  $C_A/(C_A)_0$ , así como las de las constantes de velocidad. Esto significa que el rendimiento de B y la selectividad total variarán con respecto al tiempo. Esto contrasta con el resultado de la **Ec.** (2-83) para reacciones simultáneas.

**Ejemplo** 2-8. Considérese el sistema de reacciones consecutivas descrito por medio de las Ecs. (2-84) a (2-86). Si inicialmente  $C_B = C_D = 0$ , **;cuál** sera el tiempo al cual el rendimiento de **B** alcanzará un máximo? **;Cuál** será el rendimiento máximo?

**SOLUCIÓN:** La **Ec.** (2-89) nos da el rendimiento de *B* en términos de  $C_A/(C_A)_0$ . Esta relación puede expresarse como una función del tiempo al integrar la **Ec.** (2-84). El resultado es

$$\frac{C_A}{(C_A)_0} = e^{-k_1 t} \tag{A}$$

Entonces, la Ec. (2-89) se transforma en

$$x_{B} = \frac{k_{1}}{k_{1} - k_{4}} \left( e^{-k_{3}t} - e^{-k_{1}t} \right) \tag{B}$$

Para obtener el valor máximo de  $x_B$  diferenciamos la Ec. (B) con respecto al tiempo, y hacemos que la derivada sea igual a cero:

$$\frac{dx_B}{dt} = 0 = \frac{k_1}{k_1 - k_3} (-k_3 e^{-k_3 t} + k_1 e^{-k_1 t})$$
  
$$t_{\max B} = \frac{\ln (k_1 / k_3)}{k_1 - k_3}$$
(C)

Sustituyendo este valor del tiempo en la **Ec.** (B), se obtiene el rendimiento máximo.

$$(x_B)_{max} = \left(\frac{k_1}{k_3}\right)^{k_3/(k_3 - k_1)}$$
(D)

En la Fig 2-7 se muesta la forma de las curvas de concentración en función del tiempo. La selectividad  $x_B/x_D$ , que se obtiene al dividir la **Ec**. (2-89) entre la (2-90) es muy alta con valores de tiempo bajos (lo que corresponde a  $C_A/(C_A)_0 \rightarrow 1$ ) y disminuye al incrementarse el tiempo. La curva de selectividad corresponde a la línea punteada de la Fig. 2-7.

Los sistemas de ecuaciones diferenciales de primer orden con el tiempo como variable independiente, se prestan idealmente para su resolución por medio de computación analógica. Por tanto, las ecuaciones cinéticas del tipo considerado en esta sección se pueden resolver en forma muy conveniente con un computador analógico. Este procedimiento se ilustra en los problemas del final del capítulo.

Ejemplo 2-9. Se va a **clorar** benceno en fase líquida en un reactor tipo olla operado en base semicontinua; es decir, el reactor se carga inicialmente con benceno líquido y luego se le hace burbujear cloro gaseoso, manteniendo la solución bien agitada. El reactor está equipado con un condensador de reflujo, el cual condensará el benceno y los productos clorados, pero no interferirá en la eliminación del cloruro de hidrógeno. Suponga que el cloro se **añade** lentamente, de manera que 1) las concentraciones de cloro y cloruro de hidrógeno, en la fase líquida, son **pequeñas** y que 2) no hay pérdida de cloro.



Fig. 2-7 Concentraciones en función del tiempo para el sistema de reacciones consecutivas  $A \rightarrow B \rightarrow D$  para B = D = Oat = 0.

La temperatura de operación se mantendrá constante a 55 °C, las reacciones principales son las tres de sustitución que producen mono-, di-, y triclorobenceno.

1 
$$C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$$
  
2  $C_6H_5Cl + Cl, \rightarrow C_6H_4Cl_2 + HCl$   
3  $C_6H_4Cl_2 + Cl, \rightarrow C_6H_3Cl_3 + HCl$ 

Investigando estas reacciones, **MacMullin<sup>34</sup>** encontró que los cocientes de las constantes tienen los siguientes valores a 55 "C:

$$\frac{k_1}{k_2} = 8.0$$
  $\frac{k_2}{k_3} = 30$ 

Determine los rendimientos de cada producto en función del número de moles de cloro **añadidas** por mol de benceno cargado al **reactor.**<sup>35</sup> La retención en el condensador a reflujo es despreciable.

**SOLUCIÓN.**<sup>36</sup> El proceso descrito no es ni continuo ni por lotes, sino que es del tipo semicontinuo. Sin embargo, haciendo suposiciones que son razonablemente válidas, el problema puede reducirse a un reactor por lotes a volumen constante. Si la densidad de la solución permanece constante y el cloruro de hidrógeno se vaporiza y abandona la solución, el volumen de la reacción en fase líquida será constante. Entonces, se cumplen las restricciones de este capítulo y la **Ec.** (2-9) resulta una expresión apropiada para la velocidad Supóngase que las reacciones son de segundo orden. Así, la velocidad de desaparición del benceno, dependiente totalmente de la primera reacción, es

$$-\frac{dC_B}{dt} = k_1 C_B C_{C_2} \tag{A}$$

Análogamente, las velocidades netas de formación de mono-, di- y triclorobenceno (M, Dy T) son

$$\frac{dC_M}{dt} = k_1 C_B C_{\Omega_2} - k_2 C_M C_{\Omega_2} \tag{B}$$

$$\frac{dC_D}{dt} = k_2 C_M C_{\Omega_2} - k_3 C_D C_{\Omega_2} \tag{C}$$

#### 34 R. B. MacMullin, Chem. Eng. Progr., 44, 183 (1948).

35 Desde el punto de vista de la determinación de las ecuaciones de velocidad a partir de datos experimentales, seria más apropiado invertir este ejemplo, es decir, requerir la evaluación de los cocientes de las constantes de velocidad a partir de curvas de composición dadas. En realidad, los cálculos involucrados son esencialmente los mismos para los dos casos.

36 Este problema fue originalmente resuelto por MacMullin en una forma algo diferente.

Cinética química 117

$$\frac{dC_T}{dt} = k_3 C_D C_{Cl_2} \tag{D}$$

Estas cuatro ecuaciones de velocidad, junto con el balance de masa, pueden resolverse para los rendimientos buscados de los productos (en términos de la cantidad de benceno que ha reaccionado), eliminando el tiempo como **variable.** Las expresiones no pueden resolverse directamente para obtener composiciones en función del tiempo, debido a que no se conocen las magnitudes de las constantes de velocidad individuales (sólo se conocen sus cocientes). Aunque las ecuaciones de velocidad son de segundo orden, la concentración de cloro aparece en todas las expresiones y puede cancelarse. Por tanto, el sistema reaccionante es equivalente al sistema consecutivo de primer orden que se consideró anteriormente, con la diferencia de que se trata de tres reacciones.

Si la Ec. (B) se divide entre la (A), se obtiene

$$\frac{dC_M}{dC_B} = -1 + \frac{k_2}{k_1} \frac{C_M}{C_B} \tag{E}$$

Esto es similar a la mente refiniéndose a la robenceno es **Ec. (2-87),** por lo que su solución puede escribirse inmediata-**Ec. (2-87),** por lo que su solución puede escribirse inmediata-**Ec. (2-89).** Por consiguiente, el rendimiento de **monoclo**-

$$x_{M} = \frac{C_{M}}{(C_{B})_{0}} = \frac{k_{1}}{k_{1} - k_{2}} \left\{ \left( \frac{C_{B}}{(C_{B})_{0}} \right)^{k_{2}/k_{1}} - \frac{C_{B}}{(C_{B})_{0}} \right\}$$

Puesto que el volumen del líquido reaccionante es constante, la concentración es proporcional al número de moles. Además, todos los rendimientos son los cocientes de la concentración entre la concentración inicial del **benceno**. Por tanto,  $C_{m}/(C_{m})_{0} = n_{m}/(n_{m})_{0}$ , etc. Puesto que  $(n_{m})_{0} = 1.0$  mol, la ecuación anterior para  $x_{m}$  puede escribirse como

$$x_{M} = n_{M} = \frac{n_{B}}{t - \alpha} \left( n_{B}^{\alpha - 1} - 1 \right)$$
 (F)

donde  $\alpha = k_2/k_1$ .

Análogamente, la Ec. (C) puede dividirse entre la (A) para obtener

$$\frac{dn_D}{dn_B} = -\alpha \frac{n_M}{n_B} + \beta \frac{n_D}{n_B}$$
(G)

donde  $\beta = k_3/k_1$ . La Ec. (F) puede usarse en la Ec. (G) para reemplazar  $n_M$  por una función de  $n_B$ . Esto resulta en otra ecuación diferencial lineal de primer orden con respecto a  $n_D$ . Integrando esta expresión y observando que  $(n_D)_0 = 0$ cuando  $(n_B)_0 = 1$ , se obtiene el rendimiento de D,

$$x_D = \frac{n_D}{(n_B)_0} = n_{\underline{\beta}} = \frac{\alpha}{1-\alpha} \left( \frac{n_B}{1-\beta} - \frac{n_B^{\alpha}}{\alpha-\beta} \right) + \frac{\alpha n_B^{\beta}}{(\alpha-\beta)(1-\beta)}$$
(H)

La concentración de triclorobenceno puede determinarse por diferencia, efectuando un balance de masa de los componentes aromaticos. Puesto que la concentración inicial de benceno es 1 .O y se produce 1 mol de cada olorobenceno por mol de benceno, la concentración molal es constante e igual a la unidad. Por consiguiente

$$1.0 = n_B + n_M + n_D + n_T$$
(1)

Las Ecs. (F) (H) e (1) dan las concentraciones de  $r_M$ ,  $n_D$  y  $n_T$  en téminos de  $n_B$ . La cantidad correspondiente de cloro **añadido** puede determinarse en base a un balance de masa de esta especie. Si  $n_{C_2}$  representa el total de moles de cloro **añadido** (o que ha reaccionado) por mol de benceno, entonces

$$n_{\rm Cl_2} = n_{\rm M} + 2n_{\rm p} \pm 3n_{\rm T} \tag{J}$$

Como ilustración de los cálculos numéricos se selecciona un punto para el cual ha reaccionado la mitad del benceno. Entonces  $n_{\rm B} = 0.5$ . Se sabe que

$$\alpha = \frac{1}{8} = 0.125$$
$$\beta = \frac{k_3}{k_1} = \frac{k_3}{k_2} \frac{k_2}{k_1} = \frac{1}{30} \left(\frac{1}{8}\right) = 0.00417$$

Entonces, en la Ec.(F)

$$x_{M} = {n_{M} \over 0} = {1 \over 0.5050.125} - 0.5) = 0.477$$

Las Ecs. (H) e (1) dan

$$x_{D} = C_{D} = \frac{0.125}{1 - 0.125} \begin{pmatrix} 0.5 \\ 1 - 0.00417 \end{pmatrix} = \frac{0.125}{0.125} \begin{pmatrix} 0.5 \\ 1 - 0.00417 \end{pmatrix} = \frac{0.125(0.50)^{0.00417}}{(0.125 - 0.00417)(1 - 0.00417)} = 0.022$$
$$n_{T} = 1 - n_{B} - n_{M} - n_{D} = 1 - 0.50 - 0.477 - 0.022 = 0.001$$

Finalmente, de la **Ec.** (J),

$$n_{\mathbf{Q}_2} = 0.477 + 2(0.022) + 3(0.001) = 0.524$$

Por tanto, con 0.524 mol de cloro que ha reaccionado por mol de benceno, la mayoría del producto es monoclorobenceno, poco diclorobenceno y una cantidad despreciable de triclorobenceno.

Para obtener la composición a tiempos mas prolongados, hacemos que  $n_B$  = 0.001. Entonces, procediendo en la misma forma, la mayoría del producto es

|                                  | F     | acciones mo | lares o rer    | ndimientos | por mol de     | e benceno    |                |                |
|----------------------------------|-------|-------------|----------------|------------|----------------|--------------|----------------|----------------|
| Compuesto                        | 1.0   | 050         | 0.10           | 0.01       | 0.001          | 10-4         | 10-10          | 10-20          |
| Manadarabenceno<br>Didarabenceno | 0     | 0.417       | 0.745<br>0.152 | 0.632      | 0.482<br>0.509 | 0362<br>0625 | 0.064<br>0.877 | 0.004<br>0.852 |
| Ticlorobenceno                   | 0     | 0.001       | 0.003          | 0.005      | 0.008          | 0.013        | 0.059          | 0.02           |
| Total<br>moles de cloro usadios  | 1.000 | 1.000       | 1.000          | 1.000~     | 1.000          | 1.000        | 1.000          | 1.000          |
| original                         | 0     | 0.524       | 1.06           | 1.35       | 1.52           | 1.65         | 1.99           | 2.14           |

Tabla 2-11 Composición de bencenos clorados

mono-y-diclorobenceno con muy poco producto triclorobenceno sustituido. En la Tabla 2-11 se resumen los resultados para un intervalo de valores de  $n_{Cl_2}$  hasta de 2.14. Nótese que el rendimiento máximo del producto monoclorado se obtiene cuando ha reaccionado aproximadamente 1 mol de Cl, y el rendimiento máximo del producto diclorado resulta cuando han reaccionado unas 2 moles de Cl, Las selectividades para cualquier par de productos pueden determinarse fácilmente tomando el cociente de los rendimientos, **Ec**. (2-73). Puesto que el problema se resolvió en base a 1 mol del benceno inicial,  $n_M$ ,  $n_D$  y  $n_T$  son también equivalentes a fracciones molares.

### 2-12 Precisión de las mediciones cinéticas

Los enores de los datos experimentales pueden provenir de eventos fortuitos o de dificultades inherentes del sistema. Este último tipo puede corregirse una vez que se conoce el funcionamiento del sistema. Por ejemplo, en los estudios cinéticos, las velocidades enóneas pueden ser causadas por alguna reacción desconocida que se verifique en grado apreciable, y que no esté considerada en el tratamiento de los datos. Los errores casuales, **tales** como las fluctuaciones de temperatura de un termostato, pueden reducirse mejorando la técnica y los aparatos, pero por lo general no pueden eliminarse completamente. Estos errores casuales residuales pueden evaluarse en base a la precisión de las observaciones experimentales. Es importante en la.cinética poder calcular la precisión de las velocidades de reacción, de las constantes de velocidad y de las energías de activación, a partir de los errores en las mediciones.

Considérese como ilustración la precisión de las constantes de velocidad. El error fraccionario de la variable dependiente  $\Omega$ , que es una función de las variables independientes  $\alpha_i$ , está dado por

$$\left(\frac{\Delta\Omega}{\Omega}\right)^2 = \sum_{i=1}^{m} \left[\frac{\partial(\ln\Omega)}{\partial(\ln\alpha_i)}\right]^2 \left(\frac{\Delta\alpha_i}{\alpha_i}\right)^2$$
(2-91)

El primer paso para usar esta expresión consiste en la relación entre la cantidad de la cual queremos conocer su precisión, y las observaciones experimentales usadas. En

el caso de nuestro ejemplo, esto equivale a la relación entre la constante de velocidad y la velocidad y las concentraciones. Supóngase que la reacción es de segundo orden y que corresponde a la forma

$$\mathbf{r} = k_2 C_A C_B$$

Entonces, la relación requerida es

$$k_2 = \frac{\mathbf{r}}{C_A C_B} \tag{2-92}$$

donde  $\Gamma_{A}C_{A}$  y  $C_{B}$  son las tres variables independientes ( $\alpha_{i}$ ), y k es la variable dependiente ( $\Omega$ ). Evaluando las derivadas parciales con la Ec. (2-92) y sustituyéndolas en la Ec. (2-91) se obtiene

$$\left(\frac{\Delta k}{k}\right)^2 = \left[\frac{\partial(\ln k)}{\partial(\ln r)}\right]^2 \left(\frac{\Delta r}{r}\right)^2 + \frac{\partial(\ln [k])}{\partial(\ln [C_A])}^2 \left(\frac{\Delta C_A}{C_A}\right)^2 + \frac{\partial(\ln k)}{\partial(\ln C_B)}^2 \left(\frac{\Delta C_B}{C_B}\right)^2$$

0

$$\left(\frac{\Delta k}{k}\right)^2 = \left(\frac{\Delta \mathbf{r}}{\mathbf{r}}\right)^2 + \left(\frac{\Delta C_A}{C_A}\right)^2 + \left(\frac{\Delta C_B}{C_B}\right)^2 \tag{P3}$$

Este resultado muestra que los cuadrados de los errores fraccionarios de las mediciones individuales son aditivos. Si la precisión de las mediciones de velocidad es 8%y la de cada concentración es 4%, el error de k será

$$\left(\frac{\Delta k}{k}\right)^2 = 0.08^2 + 0.04^2 + 0.04' = 0.0096$$
  
 $\frac{Ak}{k} = 0.098$  or 9.8%

La velocidad no es una medición directa, sino que se calcula a partir de observaciones de variables tales como el tiempo y la concentración. Su precisión, que en este ejemplo se fijó arbitrariamente en 8%, debe estar basada en una evaluación similar a la que se ilustró para obtener el error de k.

La evaluación de k en base a datos de velocidades y concentraciones debe llevarse a cabo con métodos estadísticos apropiados, siempre y cuando se cuente con suficiente número de datos. Por ejemplo, la **Ec.** (2-92) muestra que existe una relación lineal entre el producto **C<sub>A</sub>C<sub>B</sub>** y **r**. Por tanto, **k**<sub>2</sub> debe determinarse a partir de la pendiente de la línea de r en función de **C<sub>A</sub>C<sub>B</sub>** determinada en base del método de la me. **dia** de los cuadrados mínimos para establecer la mejor curva a través de los puntos experimentales. En el Ej. 2-1 se illustró esta técnica para la curva de la ecuación de Anhenius de datos k-T para evaluar la energía de activación.

Los errores de la energia de activación pueden evaluarse en base a la ecuación de Arrhenius, mediante el mismo procedimiento descrito para la determinación de los errores de k. La precisión de E dependerá de la incertidumbre de k y T. Puesto que E se basa en diferencias de los valores de k y T, los mismos errores de estas dos variables resultarán en errores de E más bajos al aumentar el intervalo de temperatura cubierto por los datos.

## BIBLIOGRAFIA

- Benson, S. W., "The Foundation of Chemical Kinetics," McGraw-Hill Book Company, New York, 1960. En las páginas 50-53 se define e ilustra la hipótesis del estado estacionario que se mencionó en la Sec. 2-3. En el Cap. XII se consideran en detalle la teoría de las colisiones, las complicaciones relacionadas con la distribución de energía de las moléculas y el factor estérico y los resultados se comparan ampliamente con los de la teoría del estado de transición.
- -"Thermochemical Kinetics," John Wiley & Sons, Inc., New York, 1968. Propone medios para estimar las constantes de velocidad de diversas reacciones homogéneas.
- Boudart, Michel, "Kinetics of Chemical Processes," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1968. Presentación concisa de los conceptos fundamentales de la cinética para reacciones homogéneas y heterogéneas, incluyendo un capítulo sobre aplicación y validez de la hipótesis del estado estacionario.
- Frost, A. A., y Pearson, R. G., "Kinetics and Mechanism," John Wiley & Sons, Inc., New York, 1961. Proporciona una excelente discusión de los mecanismos de reacción y sus aplicaciones.
- Laidler, K. J., "Chemical Kinetics," 2a. ed. McGraw-Hill Book Company, New York, 1965. Texto general sobre cinética química.
- Semenov, N. M., "Problems in Chemical Kinetics and Reactivity," Vols. J y II, traducido por M. Boudart, Princeton University Press, Princeton. N. J., 1958. Proporciona amplia información relativa a las teorías cinéticas y-datos experimentales.

# PROBLEMAS

21. Una regla general muy común es que la velocidad de reacción se duplica por cada 10 °C de aumento en la temperatura. Que energía de activación sugeriría esto a una temperatura de 25 °C?

22 Se ha encontrado que la velocidad de la reacción total  $A + 2B \rightarrow C$  es de primer orden con respecto tanto a A como a B ¿Que mecanismos sugieren estos resultados?

23. La reacción total de la descomposición térmica del acetaldehído es

La secuencia de reacciones en cadena constituidas por etapas elementales que se propone para explicar la descomposición es:

### Iniciación

Propagación

$$CH_{3} \cdot {}^{+} CH_{3}CHO \xrightarrow{k_{2}} CH_{3}CO \cdot {}^{+} CH,$$
  
$$CH_{3}CO \cdot \xrightarrow{k_{3}} CH, + CO$$

.

#### Terminación

Use la hipótesis del estado estacionario para desarrollar la expresión de la velocidad total de descomposición. **Concuerdan** el orden y la estequiometría?

24. Usando la teoría de las colisiones, calcule la constante de velocidad a 300 K para la descomposición del **yoduro** de hidrógeno, suponiendo que un **diametro** de colisión de 3.5 A y una energía de activación de 44 cal-kg (en base a una constante de velocidad en unidades de concentración).

**2-5.** La dimerización homogénea del butadieno ha sido estudiada por varios **investigadores**,<sup>37</sup> encontrandose que tiene una energía de activación experimental de 23 960 **cal/mol** g, de acuerdo con la velocidad específica de reacción:

# $k = {}^{9} 2 \times 10^{9} e^{-23} 960/\kappa_{E}T$ cm<sup>3</sup>/(mol g)(s)

(en base a la desaparición del butadieno). (a) Use la teoría del estado de transición para predecir un valor de A a 600 K, para compararlo con el resultado experimental de 9.2 x 10<sup>4</sup>. Suponga que la estructura del complejo activado es

y use el método de contribución de grupos (véase la **Sec.** 1-4) para estimar las propiedades termodinámicas requeridas. (b) También prediga el valor de A a 600 K, usando la teoría de las colisiones, y compárelo con el resultado experimental. Suponga que el diámetro efectivo de colisión es de 5  $\times$  10<sup>-1</sup> cm.

**2-6.** A partir de la teoría del estado de transición y de la siguiente información **termodinámi**ca, calcule la constante de velocidad para las reacciones unimoleculares que se especifiquen. Suponga comportamiento de gas ideal.

| Descomposición de la azida<br>metílica, CH <sub>3</sub> N <sub>3</sub> 500 42 500 82<br>Descomposición del éter<br>dimetilico, CH <sub>3</sub> OCH <sub>3</sub> 780 56900 2.5 | Reacción                                                               | <i>Т</i> , К | AH',<br>cal/mol | AS,<br>g cal/(mol g)(K |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|-----------------|------------------------|
| dimetilico, CH <sub>3</sub> OCH <sub>3</sub> 780 56900 2.5                                                                                                                    | Descomposición de la azida<br>metífica, CH <sub>3</sub> N <sub>3</sub> | 500          | 42 500          | 8.2                    |
|                                                                                                                                                                               | dimetilico, CH3OCH3                                                    | 780          | 56900           | 2.5                    |

REFERENCIA: O. A. Hougen y K. M. Watson, "Chemical Process Principies," Vol. 111, "Kinetics and Catalysis," John Wiley & Sons, Inc., New York, 1947.

<sup>&</sup>lt;sup>11</sup> W. E. Vaughan, JAm. Chem. Soc., 54, 3863 (1932); G. B. Kistiakowsky y F. R. Lacher Am. Chem. Sor., 58, 123 (1936); J. B. Harkness, G.B. Kistiakowsky y W. H. Mears. J. Chem. Phys., 5,682 (1937).

2-7. La reacción reversible de segundo orden

$$A + B \neq C + D$$

tiene las siguientes constantes de velocidad directas

$$k_2 = \frac{10.4 \text{ L/(mol g)(s)}}{45.4 \text{ L/(mol g)(s)}}$$
 a 230 °C  
a 260 °C

Los cambios de entropía y entalpía en estado normal para la reacción total, son aproximadamente independientes de la temperatura, y están dados por  $\Delta H^o = 8400 \text{ cal/mol gy} \Delta S^o =$ -2.31 cal/(mol g)(K). Obtenga las expresiones para las constantes de la velocidad, tanto directa como inversa, como funciones de la temperatura. 2-8. Svirbely y Roth<sup>34</sup> estudiaron la reacción

$$CH_3COCH_3 + HCN \equiv (CH_3)_2C < OH_{OH}$$

en solución acuosa. En una corrida con concentraciones iniciales 0.0758 normal para HCN y 0.1164 normal para acetona, se obtuvieron los siguientes datos:

| t, min         | 431    | 132    | 172.5  | 265.4  | 346.7  | 434.4  |
|----------------|--------|--------|--------|--------|--------|--------|
| C HCN , normal | 0.0748 | 0.0710 | 0.0655 | 0.0610 | 0.0584 | 0.0557 |

Determine una ecuación de velocidad razonable a partir de estos datos. ( $K_e = 13.87 \text{ L/(mol)}$ 29. En la siguiente tabla se muestran los datos cinéticos a 25 °C para la conversión de bromuro de ter-butilo a alcohol ter-butílico en un disolvente de 90% acetona y 10% de agua:

| Tiempo, h | Conc. de (CH <sub>3</sub> ) <sub>3</sub> CBr<br>g mol/L |  |
|-----------|---------------------------------------------------------|--|
| 0         | 0.1039                                                  |  |
| 315       | 0.0896                                                  |  |
| 410       | 0.0859                                                  |  |
| 620       | 0.0776                                                  |  |
| 820       | 0.0701                                                  |  |
| 10.0      | 0.0639                                                  |  |
| 13.5      | 0.0529                                                  |  |
| 18.3      | 0.0353                                                  |  |
| 260       | 0.0270                                                  |  |
| 308       | 0.0207                                                  |  |

La reacción es

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

3 J. Am. Chem. Soc., 75, 3109 (1953).

Proponga una ecuación de velocidad que concuerde con estos datos.

2-10 La velocidad de esterificación de ácido acético y alcohol se puede aumentar con **HCl** como catalizador homogéneo. A 100 **°C**, la velocidad de la reacción directa es

$$r_2 = k_2 C_{H}C_{CH}$$
 moles g/(L)(min)  
 $k_2 = 4.76 \times 10^{-4}$  L/(mol g)(min)

y la velocidad de la reacción inversa de

$$r'_2 = k'_2 C_E C_W \text{ moles } g/(L)(\min)$$
  
 $k'_2 = 1.63 \times 10^{-4} L/(\operatorname{mol} g)(\min)$ 

donde  $C_{\mu}$  = concentración del ácido acético

 $C_{os}$  = concentración del alcohol

 $C_{\mathbf{r}}$  = concentración del éster

 $C_w$  = concentración del agua

Una mezcla inicial consta de masas iguales de 90% en peso de solución acuosa de ácido y 95% en peso de solución de etanol. Calcule la conversión de ácido a éster para diversos tiempos de reacción, en condiciones de volumen constante. Suponiendo una miscibilidad completa, estime la conversión de equilibrio.

211. Se han reportado<sup>39</sup> los siguientes datos para la reacción reversible (a 64 "C) entre el etóxido de sodio (NaOC<sub>2</sub>H<sub>5</sub>) y el yoduro de etildimetilsulfonio C<sub>2</sub>H<sub>5</sub>(CH<sub>3</sub>)<sub>2</sub>SI usando etanol como disolvente

| Tiempo | Concentraciones*                 |              |  |  |  |
|--------|----------------------------------|--------------|--|--|--|
| mm     | NaOC <sub>2</sub> H <sub>5</sub> | C2H5(CH3)2SI |  |  |  |
| 0      | 22.55                            | 11.53        |  |  |  |
| 12     | 20.10                            | 9.08         |  |  |  |
| 20     | 1885                             | 7.83         |  |  |  |
| 30     | 17.54                            | 6.52         |  |  |  |
| 42     | 1637                             | 5.35         |  |  |  |
| 51     | 1572                             | 4.10         |  |  |  |
| 63     | 1496                             | 3.94         |  |  |  |
| 100    | 11.02                            | 0            |  |  |  |

Hay dos posibles reacciones irreversibles:

$$NaOC_2H_5 + C_2H_5(CH_3)_2SI \rightarrow NaI + C_2H_5OC_2H_5 + S(CH_3)_2$$
  

$$NaOC_2H_5 + C_2H_5(CH_3)_2SI \rightarrow NaI + C_2H_5OH + C_2H_4 + S(CH_3)_2$$

Todo indica que la velocidad de reacción es la misma para ambos casos. **Que** ecuación de velocidad sugieren estos datos? Use el método de integración. 2-12. Resuelva el Prob. 2-11 con el método diferencial

39 E. E. Hughes y cok, J. Chem. Soc., 2072 (1948).

Los valores que se dan son proporcionales a las concentraciones en moles/L.

213. Las constantes de velocidad directa k y las constantes de equilibrio K de las dos reacciones reversibles consecutivas

en fase líquida son

$$k_{1} = 1 \times 10^{-3} \min^{-1} \qquad K_{1} = 0.8$$
  
$$k_{2} = 1 \times 10^{-2} \min^{-1} \qquad K_{2} = 0.6$$

Si la concentración inicial de Aes 1.0 molal, trace una gráfica de la concentración de A en función del tiempo desde 0 hasta 1000 min. Ambas reacciones son de primer orden.

**2-14.** Se estudia la descomposición térmica del óxido nitroso  $(N_2O)$  en fase gaseosa a 1030 K en un recipiente a volumen constante y con diversas-presiones iniciales de  $N_2O$ . Los datos de vida media que se obtienen son:

| $p_0$ , mmHg         | 52.5  | 139 | 290 | 360 |
|----------------------|-------|-----|-----|-----|
| t <sub>1/2</sub> , S | 860.0 | 470 | 255 | 212 |

Determine una ecuación de velocidad que concuerde con estos datos.

215. Se ha postulado que la descomposición térmica del éter dietílico se verifica por medio del siguiente mecanismo en cadena:

Iniciación

$$(C_2H_5)_2O \xrightarrow{k_1} CH_3 + CH_2OC_2H_5$$

Propagación

CH... + 
$$(C_2H_5)_2O \rightarrow C_2H_6 \leftarrow CH_2OC_2H_5$$
  
CH<sub>2</sub>OC<sub>2</sub>H<sub>5</sub>  $\rightarrow$  CH<sub>3</sub>·+ CH<sub>3</sub>CHO

Terminación

$$CH_3$$
 +  $CH_2OC_2H_5 \xrightarrow{k_4}$  productos finales

Muestre que la hipótesis del estado estacionario indica que la velocidad de descomposición es de primer orden con respecto a cualquiera de las concentraciones. 2

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$$

Determine los perfiles de concentración en función del tiempo para A, B, C y D en un computador analógico. Resuélvase el problema mediante el siguiente procedimiento:

Etapa 1. Para limitar el intervalo de variables de 0 a 1.0, transforme primero las ecuaciones diferenciales que expresan la velocidad, a formas adimensionales usando las nuevas variables.

i26 Ingeniería de la cinética química

$$A^{*} = \frac{C_{A}}{(C_{A})_{0}} \qquad B^{*} = \frac{C_{B}}{(C_{A})_{0}} \qquad C^{*} = \frac{C_{i}}{(C_{A})_{0}} \qquad D^{*} = \frac{C_{D}}{(C_{A})_{0}} \qquad t^{*} = k_{1}t$$

donde  $(C_A)_0$  es la concentración inicial de A. Nótese que las condiciones iniciales son  $\iota^* = 0$ ,  $A^* = 1$ ,  $y B^* = C^* = D^* = 0$ .

Equa 2 Prepare un diagrama de bloques mostrando la red de conexiones de los integradores, invertidores, sumadores y potenciómetros necesarios para resolver las ecuaciones diferenciales de  $A^*$ ,  $B^*$ ,  $C^*$  y  $D^*$ . Supóngase que  $k_2/k_1 = k_3/k_1 = 1.0$ .

*Etqu* 3. Distribuya la red de conexiones de un computador analógico de acuerdo con el diagrama de bloques, y obtenga las **gráficas** de  $A^*$ ,  $B^*$ ,  $C^*$  y  $D^*$  en función de  $t^*$  en un oscilos-copio o en un graficador xy.

2-17. Resuelva el Prob. 2-16 por integración analítica de las ecuaciones diferenciales (en sus formas adimensionales).

2-18 Las soluciones acuosas de diazobenceno se descomponen irreversiblemente de acuerdo a la reacción

$$C_6H_5N_2Cl(aq) \rightarrow C_6H_5Cl(aq) + N_2(g)$$

La cinética es de primer orden. En un experimento<sup>41</sup> a 50 °C, la concentración inicial de  $C_{s}H_{s}N_{2}CI$  fue de 10 g/L y se obtuvieron las siguientes cantidades de  $N_{2}$ :

 Tiempo
 de
 reacción,
 min
 6
 9
 12
 14
 18
 20
 22
 24
 26
 30

 N, producido,
 19.3
 26.0
 32.6
 36.0
 41.3
 43.3
 45.0
 46.5
 48.4
 50.3

cm<sup>3</sup> a 50 °C,1 atm

La descomposición completa de la sal diazo produjo 58.3 cm<sup>3</sup> de N<sub>2</sub>. Calcule un valor exacto de la constante de velocidad.

**2-19.**<sup>42</sup> Supóngase que se estudia cinéticamente una reacción gaseosa entre *A* y *B*, efectuando mediciones isotérmicas del periodo de vida media de diferentes composiciones iniciales de **reac**-tantes. Los resultados para cada una de las cuatro diferentes condiciones iniciales son como sigue:

| $(p_A)_0$ , m                      | mHg | 500 | 125 | 250 | 250 |
|------------------------------------|-----|-----|-----|-----|-----|
| (p <sub>B</sub> ) <sub>ox</sub> mi | mHg | 10  | 15  | 10  | 20  |
| $(t_{1/2})_{B}$ ,                  | min | 80  | 213 | 160 | 80  |

Si la velocidad es de primer orden con respecto al componente A y de segundo orden con respecto a B, icual es el valor numérico de la velocidad específica de reacción?

**2-20.<sup>43</sup>** La descomposición del bióxido de nitrógeno corresponde auna ecuación de velocidad de segundo orden. Los datos a diferentes temperaturas son como sigue:

| 41 0. A. Hougen y K. M. Watson, "Chemical     | Process Principles," Vol. III, | "Kinetics and Catalysis," |
|-----------------------------------------------|--------------------------------|---------------------------|
| John Wiley & Sons, Inc., New York, 1947.      | • 20 Carlo                     | •                         |
| De A. A. Frost y R. G. Pearson, "Kinetics and | 1 Mechanism," John Wiley       | & Sons, Inc., New York    |
| 1953 (con permiso).                           |                                |                           |

| <i>T</i> , K                          | 592 | 603 | 627  | 6515 | 656  |
|---------------------------------------|-----|-----|------|------|------|
| $k_{g}$ ; cm <sup>3</sup> /(mol g)(s) | 522 | 755 | 1700 | 4020 | 5030 |

Calcule la energía de activación E en base a esta información, considerando que la reacción es

$$2NO_2 \rightarrow 2NO + 0$$
,

221. Los reactantes A y B se introducen en un recipiente de reacción a tiempo de cero, donde  $(C_A)_0 = (C_B)_0$ . Se verifican las siguientes reacciones a densidad constante:

1. 
$$A + B \rightarrow C$$
  
2.  $A + C \rightarrow D$ 

donde C es el producto deseado. Si ambas reacciones son de segundo orden, obtenga una expresión para la selectividad de C con respecto a D en términos de la concentración total de A. Determine también la conversión total a la cual la selectividad alcanzará un máximo cuando  $k_1/k_1 = 1.0$ . Se obtendrá la máxima conversión de A a C a la misma conversión total correspondiente al valor para el cual la selectividad de C con respecto a D llega al mbimo?

2-22. El sistema de reacciones irreversibles, de primer orden y paralelas

1. 
$$A \rightarrow B$$
  
2.  $A \rightarrow C$ 

consta de tres componentes, por lo que el curso de la reacción se puede representar de modo conveniente en un diagrama triangular.<sup>44</sup> Supóngase que sólo hay A inicialmente presente a una concentración (C,), Suponga también una densidad constante, por lo que la suma de las concentraciones de todos los componentes sera constante e igual a (Ca). Considerese que uno de los vértices del triangulo equilátero representa una mezcla reaccionante que contiene 100% A, el segundo 100% B y el tercero 100% C. Use las Ecs. de la Sec. 2-11 para mostrar la forma en que se puede representar la mezcla reaccionante en el diagrama. Trace el curso de la reacción desde cero hasta la conversión total de A cuando  $k_1/k_1 = 2$ . Oue curso se seguiría si  $k_2/k_1 = 0?$ 

2.23. La reacción

York, 1963.

$$A_2 + 2B \rightarrow 2C$$

se verifica con el mecanismo

1. 
$$A_2 \stackrel{A_1}{\neq} 2A_{A_1}^{A_1}$$
  
2.  $A + B \stackrel{A_2}{\neq} C_{A_2}^{A_2}$ 

"Chemical Reactor Design and Operation," Kramers y Westerterp, Pág. 47, Academic Pres, Inc, New

<sup>44</sup> La representación del curso de reacciones en diagramas triangulares se describe con todo detalle en

Si la primera etapa es reversible y lenta con respecto a la segunda etapa reversible, *i*cuál será la ecuación de velocidad para la desaparición neta de A?

244. Supóngase que las reacciones consecutivas de primer orden que se describen en la Sec. 2-11 se verifican a densidad constante en un reactor por lotes con una mezcla inicial que solamente contiene A a una concentración ( $C_{a}$ ). Trace en un diagrama triangular los cursos de la reacción para los tres casos:  $k_1/k_1 = 0.5$ , 1.0 y 2.0. 2.25. Las reacciones de segundo orden

$$1. \quad A + B \to C$$

$$2. \quad A + A \to A_2$$

verifican a densidad constante, con una mezcla inicial que sólo contiene A yB a concentraciones iguales. Para el caso de un reactor por lotes, trace el curso de la reacción en un diagrama triangular para  $k_2/k_1 = 1.0$ .

2.26. El mecanismo para la descomposición del ozono puede escribirse como

$$0, \stackrel{\mathbf{k}_1}{\rightarrow} \mathbf{0} + \mathbf{0}$$
$$\mathbf{0} + \mathbf{0}_3 \stackrel{\mathbf{k}_2}{\rightarrow} 2\mathbf{0}_3$$

Suponga que la segunda etapa es independiente de la concentración de ozono (debido a condiciones experimentales especiales en el sistema de laboratorio). Entonces, se puede aplicar una constante de velocidad de primer orden,  $k_1 = k_2 C_{o_1}$ .

(a) Resuelva las ecuaciones de velocidad para obtener Con, Co y Co, en función del tiem-

po, en condiciones tales que  $C_{o_2} = C_o = 0$  y  $C_{o_3} = (C_{o_3})_0$ , cuando t = 0. (b) Trace curvas para  $C_{o_3}/(C_{o_3})_0$ ,  $C_{o_2}/(C_{o_3})_0$  y  $C_o/(C_{o_3})_0$  en función del tiempo para  $k_1 = 0$ .  $10^3$  (s)<sup>-1</sup> y  $k_3 = 10^3 = 10^3$  (s)<sup>-1</sup>.

(c) Después suponga que el **atomo** de oxígeno es muy reactivo con respecto al ozono, por lo que  $k_1 = 10^6$  (s)<sup>-1</sup>. Trace nuevamente las curvas de concentración en función del tiempo para las tres especies.

(d) ¿Cuales son los tiempos, t nav en los cuales la concentración de oxígeno atómico alcanza un máximo para los dos valores de kit ¿Cuáles son las concentraciones máximas de oxígeno atómico?

(e) A qué valores tenderían  $t_{max}$  y  $(C_0)_{max}$  cuando  $k_1/k_1 \rightarrow \infty$ . Suponga que la teoría de la aproximación de estado estacionario es aplicable a este sistema, considerando al oxígeno atómico como intermediario reactivo.  $\mathbf{D}$  e se puede decir con respecto a los valores de  $\mathbf{k}_1$  y  $\mathbf{k}_2$ para que esta aproximación sea válida?

2-27. La reacción gaseosa H<sub>2</sub> + Br, = 2HBr ha sido estudiada con gran detalle, empezando con los trabajos de Bodenstein y Lind. Estos investigadores demostraron que la velocidad podía representarse con la ecuación

$$\mathbf{r} = \frac{dC_{HBr}}{dt} = \frac{k_2 C_{H_2} C_{Br_2}^{1/2}}{1 + k_1 C_{HBr} / C_{Br_2}}$$

Esta expresión con un término de denominador que incluye concentraciones sugiere que existe un mecanismo complicado. Se ha propuesto el siguiente mecanismo de reacciones atómicas en cadena

M. Bodenstein y SC. Lind, Z. Physik Chem. 57, 168 (1906).

$$\begin{array}{l} & Br, \stackrel{k_1}{\rightarrow} 2Br \cdot \quad (\text{iniciación}) \\ & Br \cdot + H_2 \stackrel{k_3}{\rightarrow} H \cdot + HBr \\ & H \cdot + Br_2 \stackrel{k_3}{\rightarrow} Br \cdot + HBr \\ & H \cdot + HBr \stackrel{k_4}{\rightarrow} H_2 + Br \cdot \\ & 2Br \cdot \stackrel{k_5}{\rightarrow} Br, \quad (\text{terminación}) \end{array}$$

Por otra parte, también se ha sugerido el siguiente conjunto de reacciones reversibles para este mecanismo:

$$Br_{2} + M \underset{k_{d'}}{\overset{k_{1}}{\Rightarrow}} 2Br + M \quad (iniciación)$$

$$Br + H_{2} \underset{k_{2'}}{\overset{k_{7}}{\Rightarrow}} HBr + H$$

$$H + Br_{2} \underset{k_{d'}}{\overset{k_{n}}{\Rightarrow}} HBr + Br$$

donde Mes cualquier molécula gaseosa con suficiente energía para provocar la disociación del **Br**<sub>2</sub> a Br.

Demuestre que ambos mecanismos conducen a la **ecuación** de velocidad propuesta por Bodenstein y Lind.

**2-28.** Considtrese que la fotocloración del propano se verifica de acuerdo con las reacciones descritas en la **Sec.** 2-8. Si la etapa de terminación que controla es la terminación **heterogénea** de radicales cloro,

obtenga una **ecuación** de velocidad para la **reacción** total. **¿Cuál** sería la forma de la **ecuación** de velocidad si la terminación homogénea de segundo orden de Cl fuera la que controlara (es decir, de acuerdo con la **reacción**  $Cl + Cl \rightarrow Cl$ ,)?

**2-29.** Se estudia la cinética de una reacción irreversible de segundo orden y en fase liquida A + B - C en un aparato de volumen constante. Empezando con concentraciones iguales de 1.0 mol/L de A y B, la reacción se suspende después de 30 min, cuando ha desaparecido un 20% de los reactantes. Los errores casuales serán del orden de 5 s en las lecturas de tiempo y de 0.002 mol/L en las mediciones de concentración. Estime el error fraccionario de las constantes de velocidad calculadas en base a estos datos.

230. Considere la secuencia de reacciones

$$A \rightarrow B \rightarrow C$$

donde ambas reacciones son de primer orden e irreversibles. Las reacciones se verifican **isotér**micamente en condiciones **homogéneas** con buena **agitación**.

Se desea establecer un conjunto de criterios con respecto a los valores permisibles de las constantes de velocidad, para la aplicación de la aproximación del estado estado estacionario (para el componente **B**), para calcular la velocidad de **producción** de C. En forma **más** especifica, **su**-

ponga que la aproximación es satisfactoria cuando el cociente  $(C/A_0) / (C/A_0) \ge \beta$ , donde  $\beta$  es cercano pero inferior a la unidad. Suponga también que los criterios deben ser validos para todos los tiempos de reacción correspondientes a conversiones de *A* mayores de  $\alpha(\alpha$  tiene un valor cercano a cero). Desarrolle un criterio para un reactor por lotes con la condición inicial  $A = A_0, B = C = 0$ , donde *A*, *B* y C representan concentraciones de los componentes. La relación de concentraciones  $(C/A_0)$ , es el valor exacto y  $(C/A_0)$ , es el resultado de la aproximación de estado estacionario.