disparador. Durante el intervalo T₁, se verifica que

$$\frac{V_{TH} \quad V_{TL}}{T_1} = \frac{V_{OH}}{RC} \otimes T_1 = RC \frac{V_{TH} \quad V_{TL}}{V_{OH}}$$

$$(10.27)$$

Similarmente, durante el intervalo T₂

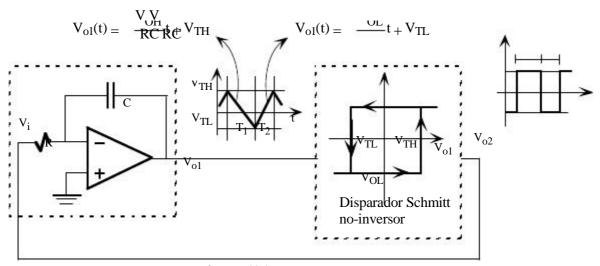


Figura 10.14. Generador de onda triangular.

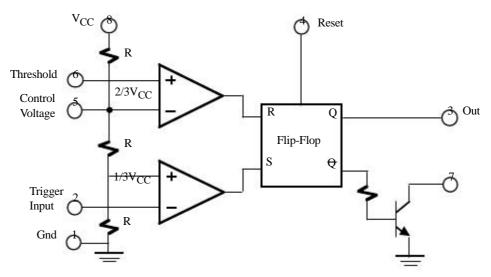


Figura 10.15. Diagrama circuital del temporizador 555.

10.9.- Temporizadores integrados

Existen en el mercado un conjunto de circuitos integrados denominados temporizadores (*timers*) especialmente diseñados para realizar multivibradores monoestables y astables. El temporizador 555 (NE555 de Signetics en versión bipolar y TLC555 de Texas Instruments en versión CMOS) es un circuito integrado barato y

muy popular que fue desarrollado en 1972 por Signetics Corporation. En la figura 10.15 se muestra el diagrama circuital de este temporizador. Está constituido por dos comparadores, un flip-flop SR y un transistor que actúa como un elemento de conmutación. Las tres resistencias en serie de valor R definen las tensiones de comparación a $1/3V_{CC}$ y $2/3V_{CC}$.

En la figura 10.16 se presenta al 555 en la configuración monoestable. Al aplicar un pulso negativo en V_i con una tensión inferior a $1/3V_{CC}$, el condensador C se carga libremente a través de R. Este proceso de carga finalizará cuando la $V_c=2/3V_{CC}$, en cuyo caso se produce la descarga brusca de C a través del transistor de salida. El pulso de salida tiene una duración T, especificado por el tiempo que tarda el condensador en pasar de $\sim 0V$ a $2/3V_{CC}$, viene definido por la siguiente ecuación

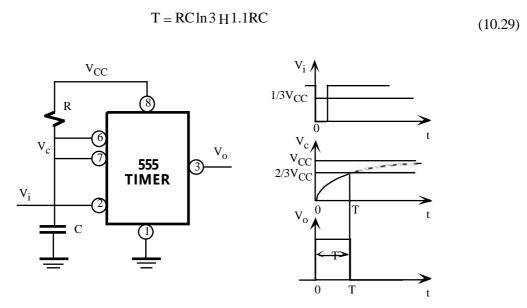
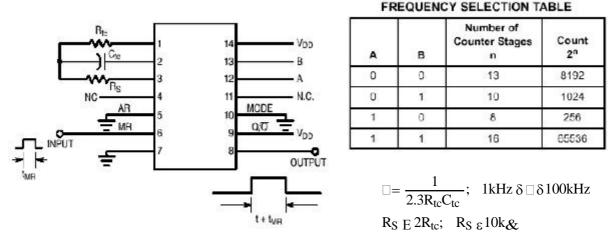


Figura 10.16. Temporizador 555 en configuración monoestable y diagrama temporal.

En la figura 10.17 se presenta al 555 en la configuración multivibrador astable. En este caso el condensador varía su tensión entre $1/3V_{CC}$ y $2/3V_{CC}$. El proceso de carga se realiza a través de R_A+R_B y el de descarga a través de R_B . Como resultado se genera a la salida una onda cuadrada no-simétrica definido por dos tiempos T_1 y T_2

$$T_{1} = (R_{A} + R_{B})C \ln 2 \text{ H } 0.69(R_{A} + R_{B})C \qquad y \qquad T_{2} = R_{B}C \ln 2 \text{ H } 0.69R_{B}C \qquad (10.30)$$

$$V_{CC}$$


Figura 10.17. Temporizador 555 en configuración astable y diagrama temporal.

El porcentaje de ocupación del ciclo (duty cycle) viene definido por

Duty cycle =
$$\frac{T_1}{T_1 + T_2} = \frac{R_A + R_B}{R_A + 2R_B}$$
 (10.31)

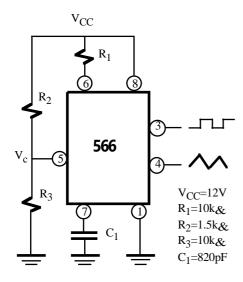
Obsérvese que el *duty cycle* es mayor que 0.5 (50%) lo que significa que la onda cuadrada no es simétrica y la duración del estado lógico alto es mayor que el bajo $(T_1 > T_2)$.

Por último, la configuración astable y monoestable del 555 resulta poco práctica cuando se desea tiempos demasiado largos. El XR-2240 es básicamente un 555 con un contador binario programable de 8 bit para alargar las características temporales del circuito. Además, admite la opción de conectar varios XR-2240 en cascada para obtener señales temporales de hasta varios meses de duración. En la figura 10.18 se describe una aplicación básica del temporizador MC1451D de Motorola. Las resistencias R_{tc} , C_{tc} y R_{S} se utilizan para definir la frecuencia f de reloj del oscilador interno que debe verificar $1kHz\delta f\delta 100kHz$. Este oscilador constituye la señal de sincronismo de un contador de 16-bit. La única salida Q se obtiene selecionando el bit 8, 10, 13 y 16 de este contador a través de dos líneas de entrada A y B lo que permite dividir la frecuencia del oscilador por 256, 1024, 8192 y 65536.

Figura 10.18. Temporizador MC14541D de Motorola.

10.10.- Generadores de señal monolíticos

Los circuitos integrados de generación de señales son diseñados para generar diferentes formas de onda con un número mínimo de dispositivos externos. Sus principales campos de aplicación son comunicaciones, telemetría, sintetizadores de música electrónica y verificación y calibración de instrumental de laboratorio. El bloque fundamental de estos circuitos es el oscilador controlado por tensión (*voltage-controlled oscillato*r o VCO) que genera una onda triangular o cuadrada. La señal triangular puede ser convertida a una sinusoidal mediante un conformador de forma de onda o *on-chip wave shaper*. Dos ejemplos típicos de VCO es el circuito integrado 566 (LM566 de National Semiconductor) y el generador de formas de onda de precisión ICL8038 (Intersil).


El 566 es un generador VCO que proporciona una onda cuadrada de salida ajustada a través de una resistencia y un condensador cuya frecuencia de salida depende de una tensión V_c . En la figura 10.19 se describe una aplicación básica de este circuito junto a sus características eléctricas y limitaciones. R_1 , C_1 y V_c fijan la frecuencia de salida de este circuito. V_c se obtiene a partir del divisor de tensión de R_2 y R_3 de forma que

$$V_{c} = \frac{R3}{R2 + R3} V_{CC} = 10.4V$$
(10.32)

Obsérvese que verifica $0.75V_{CC\delta}V_{c\delta}V_{CC}$. La frecuencia de oscilación del 566 es

$$\Box_{o} = \frac{2}{R_{1}C_{1}} \left\{ \frac{V_{CC} \quad V_{c}}{V_{CC}} \right\}$$
(10.33)

que en este caso vale f_0 =32.5kHz.

Limitaciones del 566 $2k \& \delta R_1 \delta 20k \& 0.75 V_{CC} \delta V_c \delta V_{CC}$ $\Box \delta 1 MHz$ $10V \delta V_{CC} \delta 24V$

Figura 10.19. Generador VCO 566.

El ICL8038 es un generador de ondas triangular, cuadrada y sinusoidal de baja distorsión y alta linealidad con frecuencias de salida que varían desde 0.01Hz hasta 300KHz. En la figura 10.20 se presenta una aplicación típica de este circuito cuya frecuencia de salida varía con la tensión de entrada V_i. Las amplitudes pico-pico de salida son: V_{CC} para la salida cuadrada, 0.33V_{CC} para la triangular y 0.22V_{CC} para la sinusoidal, todas ellas centradas a V_{CC}/2. La resistencia R_{THD} de 100k& sirve para reducir el THD de la salida sinusoidal. La frecuencia de salida viene dada por la siguiente ecuación

$$\Box_{o} = 3 \left[1 \quad \frac{L}{2R_{A}} \right] \frac{V_{i}}{CR_{A} \quad V_{C}} \tag{10.34}$$

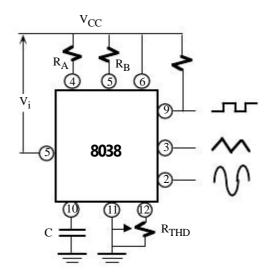


Figura 10.20. Generador VCO 8038.

Existe en el mercado gran variedad de generadores de señal monolíticos. Los VCO acoplados por emisor son circuitos muy simples, simétricos, baratos, tienen control automático de ganancia y pueden operar a altas frecuencias al no utilizar transistores BJT en la región de saturación. Su mayor inconveniente es su deriva térmica que exige técnicas de estabilización con la temperatura. Ejemplos clásicos son el NE560 (Signetics) basado en un PLL, XR-210/215 (Exar), XR-21211/12 (Exar), AD537 (Analog Devices), SSM2031 (Solid State Micro Technology).

Otro tipo de generadores monolíticos son los convertidores tensión-frecuencia o frecuencia-tensión (*voltage-to-frecuency converter* o VFC y *frecuency-to-voltage converter* o FVC) que como su propio nombre indica generan pulsos linealmente proporcional a una tensión analógica de entrada o, viceversa, proporciona una tensión de salida proporcional a la frecuencia de una señal (generalmente cuadrada) de entrada. Ejemplos de VFC son: VFC32/42/52 (Burr-Braun), LM331 (National Semiconductor), AD650/54 (Analog Devices), TSC9400/01/02 (Teledyne Semiconductor) y RC4151 (Raytheon). Ejemplos de FVC son: 451/53 (Analog Devices) y LM2907/17 (National Semiconductor).

Problemas

- **P10.1** Para el circuito de la figura 10.2.a, se pide:
 - Encontrar los puntos críticos de la VTC.
 - b) Obtener los diferentes valores de las ganancias.

Datos: $V_{CC}=15$ V, $R_{1}=30k$ &, $R_{f}=60k$ &, $R_{2}=R_{5}=9k$ &, $Y_{R_{3}}=R_{4}=3k$ &, $Y_{d}=0.7$ V.

- P10.2 El circuito de la figura 10.3.b es un oscilador de puente de Wien. Se pide:
 - a) Representar gráficamente la V_o frente a V_a.
 - b) Frecuencia de oscilación.
 - c) Amplitud máxima de salida.
- P10.3 Determinar la frecuencia de oscilación del circuito de la figura 10.5 y el valor mínimo de R_f requerido para que el circuito comience a oscilar.
- P10.4 El oscilador de cambio de fase de la figura 10.6.a utiliza un JFET con g_m=5000μ&⁻¹ y r_d=40k& y una red de realimentación con R=10k&. Seleccionar el valor de C para que la frecuencia de oscilación sea de 1kHz y el valor de R_D que verifique las condiciones de oscilación.
- P10.5 Calcular la frecuencia de oscilación del oscilador Colpitts de la figura 10.7.a siendo C_1 =750pF, C_2 =2500pF y L=40 μ H.
- P10.6 Un oscilador de cristal es especificado con L=0.52H, C_s =0.012pF, C_p =4pF y rE0&. Determinar la f_s y la f_p .
- P10.7 Encontrar la frecuencia de oscilación del multivibrador astable de la figura 10.13.
 Datos: V_{CC} = ± 10 V, R_1 =100k&, R_2 =R=1M& y C=0.01 μ F.

P10.8 Los diodos del multivibrador astable de la figura P10.8 tienen una tensión V_d que dependen de la temperatura de acuerdo a la siguiente expresión:

$$V_{d}(T)=V_{do} + TC(T-T_{o})$$

siendo $T_o=25^{\circ}C$, $TC=-2mV/^{\circ}C$ y $V_{do}=0.7V$. Encontrar la expresión del periodo de oscilación y la frecuencia de oscilación a las siguientes temperaturas: $0^{\circ}C$, $25^{\circ}C$, $50^{\circ}C$ y $100^{\circ}C$.

Datos: V_{CC} =±12 V, R=10k& y C=0.1µF.

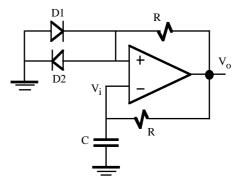


Figura P10.8

P10.9 Representar gráficamente las tensiones V_o y V_s del generador de onda triangular de la figura P10.9.

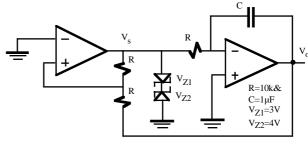
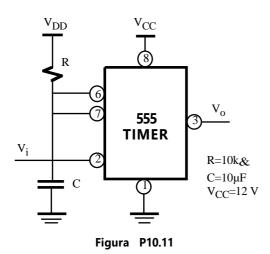
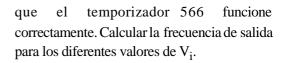
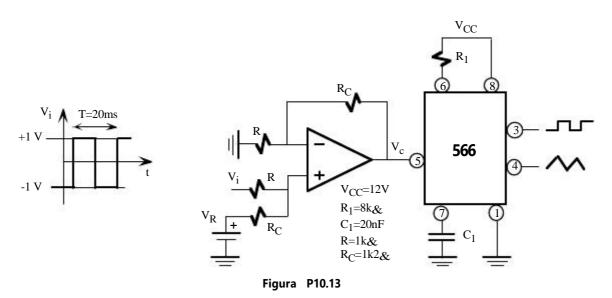



Figura P10.9


P10.10 Diseñar con el temporizador 555 los siguientes circuitos: monoestable de T=1ms y astable de periodo 100μs.


P10.11 En la figura P10.11 se muestra un ejemplo de aplicación del temporizador 555 en configuración monoestable. Determinar la duración del pulso de salida en los siguientes casos: a) $V_{DD}=V_{CC}$; b) $V_{DD}=2V_{CC}$; c) $V_{DD}=V_{CC}/2$.

Nota: el tiempo de duración del pulso está fijado por el tiempo que tarda el condensador (inicialmente descargado) en tomar el valor de $2/3V_{\rm CC}$.

- P10.12 Con un temporizador 555 y un biestable, construir un circuito que genere una onda de salida simétrica de 50KHz
- P10.13 Al circuito de la figura P10.13 se le aplica a la entrada V_i una onda cuadrada simétrica de periodo 20ms. Determinar la tensión V_R para

TEMA 11

Reguladores de tensión

11.1.- Introducción

Todos los circuitos electrónicos requieren una o más fuentes de tensión estable de continua. Las fuentes de alimentación sencillas construidas con un transformador, un rectificador y un filtro (fuentes de alimentación no reguladas) no proporcionan una calidad suficiente porque sus tensiones de salida cambian con la corriente que circula por la carga y con la tensión de la línea, y además presentan una cantidad significativa de rizado a la frecuencia de la red. Por ello, no son generalmente adecuadas para la mayoría de las aplicaciones.

En la figura 11.1 se presenta el diagrama de bloques típico de una fuente de alimentación regulada. La entrada es un transformador conectado a la red eléctrica (220V, 50Hz) con objeto de reducir su amplitud. Un rectificador de diodos rectifica la señal la cual es filtrada (generalmente a través de un condensador) para producir una señal de salida DC no regulada. El regulador de tensión proporciona una salida mucho más regulada y estable para alimentar a una carga.

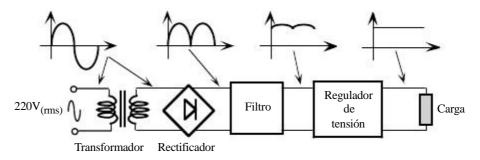


Figura 11.1. Diagrama de bloques de una fuente de alimentación regulada.

La función de un <u>regulador de tensión</u> es proporcionar una tensión estable y bien especificada para alimentar otros circuitos a partir de una fuente de alimentación de entrada de poca calidad; después del amplificador operacional, el regulador de tensión es probablemente el circuito integrado más extensamente usado. Además, deben ser capaces de proporcionar corrientes de salida desde unas cuantas decenas de miliamperios, en el caso de reguladores pequeños, hasta varios amperios, para reguladores grandes. Los reguladores de tensión se clasifican en:

 a) <u>Reguladores en serie o lineales</u>. Controlan la tensión de salida ajustando continuamente la caída de tensión en un transistor de potencia conectado en serie entre la entrada no regulada y la carga. Puesto que el transistor debe conducir corriente continuamente, opera en su región activa o lineal. Aunque son más sencillos de utilizar que los reguladores de conmutación, tienden a ser muy ineficientes debido a la potencia consumida por el elemento en serie. Su eficiencia es alrededor del 20% y solamente resultan eficaces para baja potencia (< 5 W).

b) Reguladores de conmutación. Utilizan un transistor de potencia como conmutador de alta frecuencia, de tal manera que la energía se transfiere desde la entrada a la carga en paquetes discretos. Los pulsos de intensidad se convierten después a una corriente continua mediante un filtro inductivo y capacitivo. Puesto que, cuando opera como conmutador, el transistor consume menos potencia que en su región lineal, estos reguladores son más eficientes (hasta el 80%) que los lineales; además, son más pequeños y ligeros. Estos reguladores se pueden diseñar para operar directamente sobre la tensión de la red rectificada y filtrada, eliminando la necesidad de utilizar transformadores voluminosos. El precio que se paga por estas ventajas es una mayor complejidad del circuito y un mayor ruido de rizado. Los reguladores de conmutación se utilizan especialmente en sistemas digitales, donde a menudo es mucho más importante una alta eficiencia y un peso bajo que un rizado de salida pequeño.

La tendencia actual en el diseño de fuentes de alimentación de varias salidas es utilizar reguladores de conmutación para aprovechar sus ventajas y utilizar después reguladores en serie para conseguir tensiones más limpias y mejor reguladas.

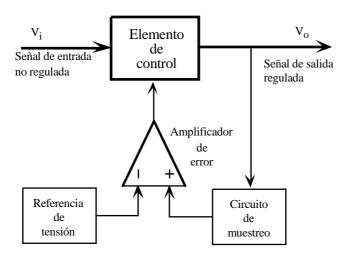


Figura 11.2. Diagrama de bloques de un regulador de tensión lineal.

11.2.- Reguladores de tensión con componentes discretos

Un regulador de tensión está constituido por una serie de bloques funcionales que permiten estabilizar la tensión de salida. La figura 11.2 muestra el diagrama de bloques de este circuito formado por: referencia de tensión, circuito de muestreo, amplificador de error y elemento de control. Una variación de la tensión de salida (V_o) es detectada por el amplificador de error al comparar la referencia de tensión y el circuito de muestreo. Este amplificador opera sobre el elemento control en serie para restaurar la V_o .

11.2.1.- Referencias de tensión

Una referencia de tensión constituye una parte fundamental de los reguladores de tensión al proporcionar

una tensión de continua, muy precisa y estable con la temperatura y con el tiempo. Requerimientos típicos de estabilidad térmica son del orden de 100 ppm/°C o mejor. Para minimizar los errores debidos al autocalentamiento, las referencias de tensión proporcionan una corriente de salida moderada, típicamente en el rango de unos pocos mA. Las técnicas de compensación aplicadas a las referencias semiconductoras permiten conseguir coeficientes de temperatura de 1 ppm/°C o menores. Estas técnicas se utilizan también en el diseño de transductores de temperatura.

Las referencias de tensión están basados en diodos Zener y transistores bipolares o de salto de banda ("bandgap").

Un diodo Zener es el dispositivo más barato y simple para obtener una tensión de referencia más o menos estable. Sin embargo, hay que adaptarse a los valores de tensiones Zener presentes en el mercado (5.6 V, 6.2 V, 6.8 V,...), presenta fuerte deriva térmica y el ruido, especialmente ruido de avalancha, es muy elevado. Las limitaciones del diodo Zener pueden ser resueltas en parte con la ayuda de un OA resultando un circuito con características de autorregulación. En la figura 11.2, la configuración no-inversora del OA 741 permite ajustar la tensión de salida variando R₂.

Basado en esta estructura, el circuito monolítico REF102 (figura 11.3.a) de Burr-Brown es un ejemplo típico de un referencia de tensión de 10 V compensado térmicamente que

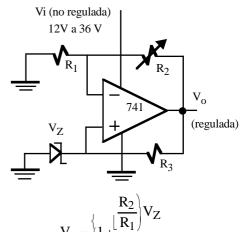
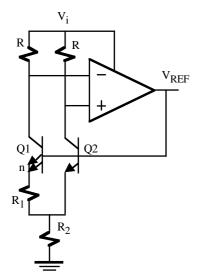


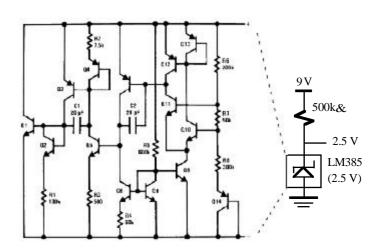
Figura 11.2. Referencia de tensión auotregulada.

utiliza un diodo Zener de V_Z =8.2V. La corriente máxima de salida es de 10 mA. La tensión de salida viene definida por la siguiente ecuación:

$$V_{0} = \begin{cases} 1 + \frac{R_{3}}{14k} \\ V_{Z} = 1 + \frac{1}{14k} \\ V_{Z} = 1 + \frac{1}{14k}$$


Figura 11.3. a) Referencia de tensión REF102 de 10 V (Burr-Brown). b) Aplicación típica.

Una aplicación típica de este circuito se presenta en la figura 11.3.b. Una vez ajustado la tensión de salida a 10 V a través de la resistencia R_S =1 M_{\odot} conectado al terminal 5 (V_{TRIM}) y el potenciómetro de 20 k_{\odot} , su compensación térmica asegura una variación máxima de 0.7mV en la tensión de salida para una variación de 0° a 70° de temperatura. Otros ejemplos de circuitos referencia de tensión monolíticos compensados térmicamente son el LM329 (National Semiconductor), el LM3999 de 6.95 V (National Semiconductor) y el LTZ100 (Linear Technology).


Los referencia de tensión basados en diodos Zener tienen valores a partir de 6 a 7 V que requieren en los referencias de tensión monolíticos tensiones de alimentación de al menos 10 V. Esto puede ser un inconveniente en sistemas alimentados con tensiones más bajas, tales como 5V. Este problema se soluciona utilizando las referencias de tensión "bandgap". Las referencias de tensión "bandgap" operan compensando el coeficiente de temperatura negativo de una tensión base–emisor, V_{BE} , con el coeficiente de temperatura positivo de la tensión térmica V_T . Analog Devices desarrolló una configuración "bandgap" constituida por dos transistores de diferente área muy estable con la temperatura, que utiliza dos transistores de áreas de emisor distintas. En la figura 11.4 se presenta el esquema de este circuito. Q_1 tiene un área de emisor n veces mayor que la de Q_2 de forma que I_{S_1} =n I_{S_2} . La tensión de salida V_{REF} es

$$V_{REF} = V_{BE2} + 2V_T \frac{R_2}{R_1} \ln(n)$$
(11.2)

En la figura 11.5 se presenta el diagrama circuital de un referencia de tensión LM385 (National Semiconductor) de 2.5V para aplicaciones de micropotencia que utiliza la configuración "band-gap". La corriente de polarización varía de 20μA a 20mA y su resistencia dinámica es de 0.4&. Otros referencias de tensión son el AD580/581/584 de Analog Devices, el MC1403/04 de Motorola y REF-01/-02/-05/-10 de Precision Monolithics.

Figura 11.4.Referencia de tensión basado en una configuración "bandgap".

Figura 11.5. Diagrama del referencia de tensión "bandgap" LM385 de 2.5 V y una aplicación típica.

11.2.2.- Regulación de tensión en serie

El circuito de la figura 11.6.a es un sencillo regulador de tensión construido mediante un transistor bipolar,

como elemento de control, y un referencia de tensión que proporciona la tensión de referencia y controla a ese transistor. El funcionamiento de este circuito es el siguiente: si la tensión de salida (V_o) decrece, aumenta la tensión V_{BE} del transistor e incrementa su corriente lo que permite restaurar la tensión de salida. Por el contrario, si V_o aumenta, la disminución en la tensión V_{BE} hace disminuir a su vez la corriente del transistor cuyo efecto es intentar reducir la tensión de salida hasta restaurar V_o al valor deseado.

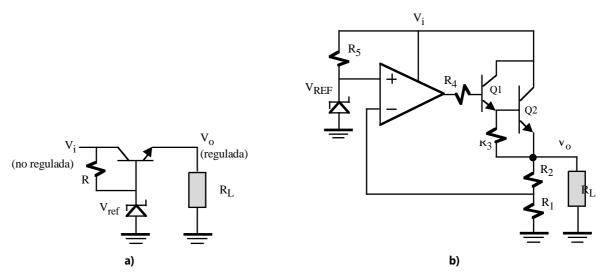


Figura 11.6. a) Regulador de tensión simple en serie. b) Regulador de tensión en serie basado en un OA.

Una versión mejorada de este regulador y que se adapta al diagrama de bloques de la figura 11.2 se presenta en la figura 11.6.b. Está constituido por un referencia de tensión y un OA que controla al Darlington (Q_1 y Q_2) de potencia de salida. Los transistores de potencia tienen una $V_{BE(on)H}$ 1V y el valor de h_{FE} es generalmente mucho menor que los transistores BJT de baja potencia (a veces tan baja como 10). Por esta razón, el elemento de regulación en serie se implementa generalmente con un par Darlington que ofrece una ganancia en intensidad alta, típicamente de 1000 o más. En este circuito, el OA actúa como amplificador de error comparando la tensión de referencia (V_{REF}) obtenida a partir de un referencia de tensión con la obtenida a través de la red de realimentación formada por un R_1 y R_2 . Como en un OA ideal, $V_n = V_p$, la tensión de salida de este circuito es

$$V = \left\{ -\frac{R_2}{R_1} \right\} V$$
 (11.3)

11.2.3.- Circuitos de protección

Los reguladores están equipados con un circuito de protección cuyo propósito es limitar la corriente del elemento en serie (o incluso anularla). Los circuitos de protección se diseñan para estar inactivos bajo condiciones de operación normal y activarse tan pronto como se intente exceder el correspondiente límite de seguridad. El propósito del circuito de protección contra sobrecarga es evitar que la corriente que circula por el transistor en serie exceda un nivel de seguridad predeterminado, como sucedería, por ejemplo, en el caso de cortocircuitar la salida.

La primera técnica, en su forma más simple, se implementa con otro transistor (Q2) y una resistencia (R_{SC}) según se indica en la figura 11.7.a. La función de R_{SC} es chequear el valor de I_{E1} y desarrollar una caída de

tensión de valor suficiente para hacer que el transistor de vigilancia Q_2 conduzca cuando I_{E1} alcance un nivel predeterminado de seguridad, $I_{E1(max)} = I_{SC}$ (figura $11 \cdot .7$.b). Esto se consigue imponiendo la condición

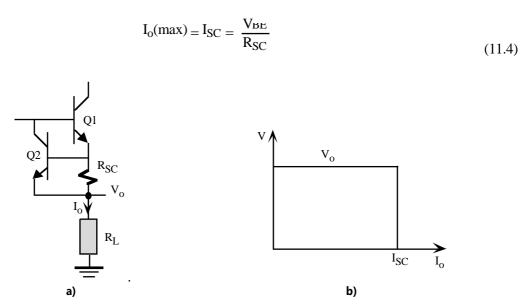


Figura 11.7. a) Circuito de protección simple y b) su curva de limitación de corriente.

Incluso con este circuito de limitación de corriente, el transistor en serie se puede calentar excesivamente bajo condiciones de cortocircuito de larga duración. Por ello, se utiliza también la segunda técnica de protección contra sobrecarga, denominada limitación de corriente foldback basado en el circuito descrito en la figura 11.8.a. La idea de la limitación foldback es reducir la corriente y la tensión de la carga cuando ocurren las condiciones de sobrecarga. En la figura 11.8.b se muestra la característica V_o – I_o típica de una fuente de alimentación con limitación foldback. Una vez que se alcanza la corriente de carga máxima (I_{FB}), el voltaje de salida disminuye y la corriente de la carga se reduce. Esto reduce la disipación de potencia del regulador y del resto de los componentes de la fuente de alimentación.

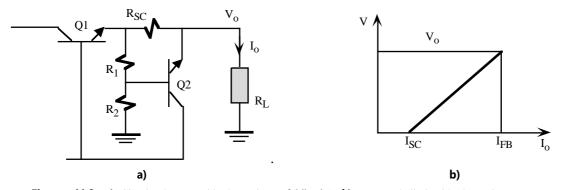


Figura 11.8. a) Circuito de protección de corriente "foldback" y b) su curva de limitación de corriente.

Bajo condiciones normales de carga, R_1 , R_2 y Q_2 no tienen efecto en la operación del circuito. Bajo condiciones de sobrecarga, la caída de tensión en R_{SC} hará que Q_2 conduzca, robando corriente de base a Q_1 y produciendo una disminución en la tensión de salida. La disminución de V_0 reduce aún más la caída de tensión en R_1 , haciendo que Q_2 se sature y reduciendo aún más la corriente y la tensión de la carga. Las intensidades I_{FB} e I_{SC} están dadas por las siguientes ecuaciones

$$I_{FB} = V_0 \frac{R_1}{R_2 R_{SC}} + V_{BE} \frac{R_1 + R_2}{R_2 R_{SC}}$$

$$I_{SC} = \frac{V_{DL}}{R_{SC}} \left\{ \frac{R_1 + R_2}{R_2} \right\}$$
(11.5)

La corriente de cortocircuito no debe ser muy pequeña; una buena elección es I_{SCH}I_{FB}/3. Las fuentes con limitación foldback se usan generalmente en aplicaciones de alta corriente.

11.3.- Reguladores de tensión monolíticos

Los reguladores de tensión monolíticos comprenden a una gran variedad de CIs. Contienen una referencia de tensión, un amplificador-comparador de error, dispositivos de control y circuitería de protección, todo ello en un simple circuito monolítico. Proporcionan una tensión de salida fija positiva (reguladores de tensión positivos), fija negativa (reguladores de tensión negativos) o ajustable a través de potenciómetros.

11.3.1.- Reguladores de tensión fija tri-terminal

Los reguladores de tensión típicos de tres terminales tienen un terminal para la entrada no regulada (IN), la salida regulada (OUT) y tierra (COMMON) y están ajustados para proporcionar una tensión de salida constante tal como +5V o +15 o −15V. Dentro de esta categoría se encuentra la serie μA78XX (positivos) o μA79XX (negativos) de Fairchild. Los dos últimos dígitos indicados por XX indican la tensión de salida y pueden ser 05, 06, 08, 12, 15, 18 y 24 V. Las versiones de baja potencia son accesibles en encapsulados de plástico y las de mayor potencia en encapsulados tipo TO-03 y TO-220 metálicos con corrientes de salida superiores a 1 A. Otros ejemplos de reguladores son el LM340 y LM320 de National Semiconductor, serie MC79XX de Motorola y el LT1003 de Linear Technology, éste último proporciona 5V y 5A de salida.

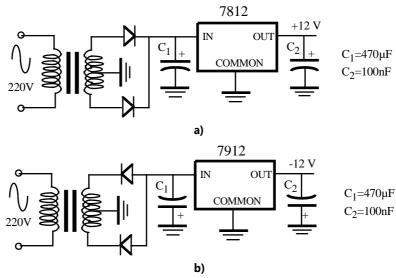
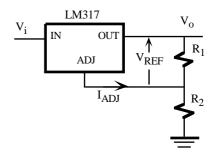


Figura 11.9. Fuente de alimentación basado en el regulador de tensión a) positivo μΑ7812 y b) negativo μΑ7912.


Las figuras 11.9.a y 11.9.b describen dos ejemplos de utilización del regulador de tensión fija μ A7812 y μ A7912 para obtener tensiones de salida reguladas de +12 V y -12 V, respectivamente. Los condensadores C_1 y C_2 mejoran la respuesta transistoria del regulador. Cuando el regulador se encuentra a cierta distancia del

rectificador, C_1 se desdobla en dos, uno conectado a la salida de los diodos y otro conectado a la entrada del regulador (valor de 0.1 a $1\mu F$) para evitar oscilaciones no deseadas.

11.3.2.- Reguladores de tensión ajustable tri-terminal

Los reguladores ajustables de tres terminales permiten ajustar la tensión de salida a partir de resistencias externas conectadas al terminal denominado ADJUSTMENT o ADJ. Uno de los más populares productos de este tipo es el LM317 (positivo) y LM337 (negativo) de National Semiconductor capaces de proporcionar hasta 1.5 A de corriente de salida. Otros ejemplos de reguladores de tensión ajustables tri-terminal son: LM338 de National Semiconductor cuya corriente de salida alcanza los 5 A, LT1038 de Linear Technology y LM396 de 10 A de National Semiconductor.

En la figura 11.10 se presenta una aplicación típica del LM317. El LM317 posee internamente una referencia de tensión tipo "bangap" que proporciona una V_{REF} =1.25 V (typ) entre los terminales OUT y ADJ y está polarizado por una fuente de corriente estable de I_{ADJ} = 65 μ A (typ). Analizando este circuito fácilmente se comprueba que

$$V = \begin{cases} \frac{R_2}{L} \\ V_{REF} + I_{ADJ}R_2 \end{cases}$$
 (11.6)

Figura 11.10. Aplicación del LM317.

Una buena aproximación es considerar que la corriente I_{ADJ} (65 μA) es muy inferior a las corrientes (mA) que circulan por las resistencias R_1 y R_2 . Luego, la ecuación 11.6 se transforma en

Variando R_2 , V_0 puede ser ajustado a cualquier valor dentro del rango 1.25 V_0V_0 30 V_0

Los reguladores de tensión duales (*dual tracking regulators*) proporcionan doble tensión de salida idóneas para alimentar OAs, convertidores, etc. Las dos tensiones de salida son de igual magnitud y polaridad opuesta que mantiene su simetría para diferentes requerimientos de carga. Un ejemplo es el popular RC4195 de Raytheon (RC4194 es la versión ajustable) con una tensión de salida de ± 15 V.

11.3.3.- Especificaciones de los reguladores de tensión

A continuación se describen algunas especificaciones de los reguladores de tensión que aparecen en las hojas de características:

• Regulación de línea (line regulation). La regulación de línea es una medida de la capacidad del circuito para mantener la tensión de salida bajo condiciones de variación de la entrada. En el caso de reguladores de tensión, la entrada se obtiene generalmente a partir de la señal de la red y tiene un rizado significativo. Si la tensión de entrada de baja calidad es V_i y la tensión de salida estabilizada es V_o, la regulación de línea (Reg_{line}) se define como:

$$Re g_{line} = \frac{V_o}{V_i} \quad (mV/V) \quad o \quad Re g_{line} = \frac{\frac{V_o}{V_o}}{V_i} \quad (\%/V)$$
(11.8)

• Regulación de carga (load regulation). La regulación de carga es una medida de la capacidad del circuito para mantener la tensión de salida aunque cambie la corriente I_L absorbida por la carga. Si el circuito fuera una fuente de tensión ideal, su salida debería ser independiente de I_L . Por tanto, la regulación de la carga está directamente relacionada con la resistencia de salida equivalente del circuito. La regulación de carga (Reg_{load}) se define como:

$$Re\,g_{load} = \frac{V_{\text{INL}} \quad V_{\text{FL}}}{I_L} \quad (mV/mA \quad mV/A) \quad o \quad Re\,g_{load} = \frac{\frac{V_{NL} \quad V_{FL}}{V_{NL}}}{I_L} \quad (\%/mA \quad \%/A) \tag{11.9}$$

donde V_{NL} es la tensión de salida sin carga y V_{FL} es la tensión de salida a máxima carga.

- *Tensión de referencia (reference voltage*). Tensión de referencia del regulador utilizada para ajustar la tensión de salida.
 - Corriente de ajuste (ajustment pin current). Corriente de salida por el terminal ADJUSTMENT.
- Corriente de salida mínima (miminum output current). Corriente mínima de salida por el terminal OUT. Esta corriente debe ser asegurada para el correcto funcionamiento del regulador de tensión.
- Corriente de salida máxima (current limit). Máxima corriente de salida que puede proporcionar el regulador antes que se active el circuito de protección.
- *Tensión "Dropout" (dropout voltage)*. El voltaje de "dropout" es la mínima diferencia de tensión entre la entrada y la salida dentro de la cual el circuito es todavía capaz de regular la salida dentro de las especificaciones. Así, por ejemplo, para I_L=1A, el μA7805 tiene un voltaje de "dropout" de 2V (typ), 2.5V (max). Esto significa que para una salida garantizada de 5V, Vi debe ser mayor que 7.5V. Los siguientes reguladores tienen un "dropout" de 0.6V: L487 y L4700 (SGS), LM2931 y LM2935 (National Semiconductor) y LT1020 (Linear Technology).
- Tensión máxima diferencial entrada-salida (Input-Output Voltage Differential). Los reguladores de tensión tienen limitado el máximo de tensiones de entrada y salida con que pueden operar. Por ejemplo, el LM117 tiene una tensión diferencial entrada-salida (Input-Output Voltage Differential) máxima V_i - V_o =40V. Esto significa que si V_o =1.25 V, la tensión de entrada V_i no debe superar los 41.25 V.

11.4.- Reguladores de conmutación y convertidores DC-DC

En los reguladores de conmutación, el elemento regulador es un transistor que está constantemente conmutando entre corte y saturación. En estas regiones de operación, el transistor disipa muy poca potencia (típicamente menos de 1mW en corte y menos de 1W en saturación). Debido a este modo de operación, los

reguladores de conmutación son bastante eficientes (a menudo alcanzan el 80% de eficiencia), especialmente cuando las diferencias entre la entrada y la salida son altas.

Además, los reguladores de conmutación pueden generar tensiones de salida mayores que la entrada no regulada y tensiones de salida de polaridad opuesta a la entrada. Otra ventaja que tienen las fuentes de alimentación conmutadas (*switchers*) es que se pueden conectar directamente a la tensión de la línea rectificada y filtrada, sin que sea necesario un transformador de potencia de alterna, dando lugar a las fuentes conmutadas conectadas a la línea (*line–powered switching supplies*). El resultado es una fuente de continua pequeña, ligera y además funcionan a menor temperatura debido a su mayor eficiencia. Por estas razones, las fuentes conmutadas se utilizan casi universalmente en computadores y en instrumentos portátiles.

Los principales problemas que tienen las fuentes conmutadas son el ruido de conmutación presente en la salida y el costo. En los reguladores de conmutación (figura 11.11), un transistor que funciona como conmutador aplica periódicamente toda la tensión no regulada a una autoinducción durante intervalos cortos. La corriente de la autoinducción crece durante cada pulso, almacenando una energía (1/2LI²) que se transfiere a un filtro capacitivo a la salida. Igual que en los reguladores lineales, se compara la salida con una tensión de referencia, pero en los reguladores de conmutación la salida se controla cambiando la anchura de pulso del oscilador en vez de controlando linealmente la tensión de base.

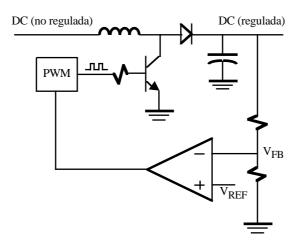


Figura 11.11. Regulador de tensión conmutada.

El corazón del regulador de conmutación es un oscilador PWM (modulación por anchura de pulsos) en donde la anchura de pulso es controlada por tensión. La salida del PWM conmuta un transistor entre corte y saturación, con un ciclo útil (*duty cycle*) que se controla con la diferencia entre la tensión de realimentación V_{FB} y V_{REF}. Básicamente, si V_{FB}>V_{REF}, el ciclo útil del PWM disminuye hasta que V_{FB}=V_{REF}; por el contrario, si V_{FB}<V_{REF}, el ciclo útil del PWM aumenta. Por tanto, el voltaje de salida es proporcional al ciclo útil del PWM. Frecuencias típicas para el PWM están en el rango de 1kHz a 200kHz. Debido a las altas frecuencias que se utilizan, los componentes del filtro pueden ser relativamente pequeños y aún así consiguen una excelente reducción del rizado. La mayoría de los reguladores de conmutación modernos emplean FETs VMOS y DMOS de potencia como elemento de conmutación para conseguir una mayor velocidad de operación.

Hay dos configuraciones básicas para los reguladores de conmutación:

1) Step-down o "bucking" (tensión de salida menor que la entrada). Un ejemplo típico es el MAX638 de

Maxim que permite obtener una tensión de salida fija de +5V o una tensión positiva ajustable mediante un divisor de tensión externo. Tiene oscilador que funciona a la frecuencia (constante) de 65kHz y el amplificador de error controla, de acuerdo con la tensión de salida, la aplicación o no de la salida del oscilador al MOS de control. Con este circuito se consigue un 85% de eficiencia, independiente de la tensión de entrada.

2) Step–up o "boosting" (tensión de salida mayor que la entrada); reguladores de inversión. La única ventaja de los reguladores step–down respecto a los lineales es su alta eficiencia. Sin embargo, los reguladores step–up sí que ofrecen una ventaja adicional cuando se necesita una tensión de salida mayor que la entrada no regulada. Los reguladores de conmutación de baja potencia pueden generar las tensiones de alimentación de ± 15 V de una amplificador operacional a partir de la batería de ± 12 V de un coche, lo que resultaría imposible con reguladores lineales. Ejemplos típicos es el regulador step–up MAX633 y el inversor MAX637 de Maxim.

Hay otro tipo de convertidores DC-DC que se denominan convertidores de tensión "flying capacitor" o "charge-pump". La idea en que se basan es usar conmutadores MOS para cargar un condensador a partir de la entrada de continua y después cambiar los conmutadores para conectar el condensador ahora cargado en serie con otro (step-up) o con polaridad cambiada a la salida (inversor). La ventaja de los convertidores de tensión *flying-capacitor* es que no utilizan autoinducciones, pero tienen como inconvenientes su baja potencia, pobre regulación y tensión limitada. Un ejemplo de convertidor de tensión *flying-capacitor* es el MAX680 (figura 11.12) de Maxim, que genera una salida doble de ± 10 V y hasta 10mA a partir de ± 5 V de entrada. El LT1026 es un convertidos similar pero utiliza condensadores de 1μ F y la resistencia de salida es de 100&.

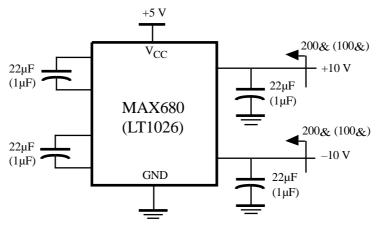



Figura 11.12. Convertidores de tensión "flying capacitor".

Elección del tipo de fuente de alimentación

- Para sistemas digitales, en los que generalmente se necesitan +5V y alta corriente (10A o más), se aconseja utilizar *line–powered switching supplies*.
- Para circuitos analógicos con señales de bajo nivel (amplificadores de pequeña señal, señales menores de 100μV, ...), en general, lo mejor es utilizar reguladores lineales, puesto que los de conmutación son muy ruidosos.
- Para cualquier aplicación de alta potencia, lo mejor es utilizar *line–powered switching supplies*, puesto que son más pequeñas, más ligeras y más eficientes
- Para aplicaciones de alto voltaje y baja potencia (tubos fotomultiplicadores, intensificadores de imágenes), lo más adecuado es utilizar un convertidor *step-up* de baja potencia.

Problemas

- P11.1 El circuito de la figura P11.1 es un referencia de tensión basado en un diodo Zener. Tiene además un circuito de *start-up* formado por R₄ y D1 que permite inicializar el sistema al estado deseado. Para el circuito, se pide:
 - a) Explicar la finalidad de R₃.
 - b) Calcular el valor de la tensión de salida V_{o} .
 - Si el 741 proporciona una corriente máxima de salida de 25mA, determinar el valor mínimo de R_L.

P11.2 Determinar las tensiones de salida V_{o1} y V_{o2} de los circuitos de las figuras P11.2.a y P11.2.b que utilizan el referencia de tensión de Burr-Brown REF102.

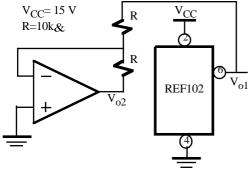
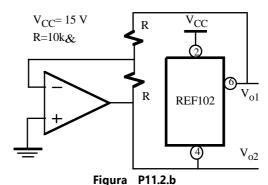



Figura P11.2.a

- P11.3 En el referencia de tensión basado en la configuración "bandgap" de la figura 11.5 el OA está trabajando en la zona lineal. Demostrar que la tensión de referencia V_{REF} verifica la ecuación 11.2.
- **P11.4** Para el regulador de tensión de la figura 11.6.b, se pide:
 - a) Determinar el valor de V_o.
 - Si la carga es una resistencia R_L=10&, calcular la tensión y corriente de salida del OA.
 - c) Se ha observado que si se añade a V_i una señal sinusoidal de 0.5Vsenwt aparece a la salida una señal de valor 100mV senwt. Determinar el parámetro de regulación de línea.

Datos: h_{FE} =70, V_{BE} =0.7 V, R_1 = R_2 =10k&, R_3 =3k3&, R_4 =510&, R_5 =33k&, V_i =10 V, V_{REF} se obtiene a partir del LM385.

- P11.5 Diseñar un circuito de protección de corriente "foldback" para un regulador de tensión de V_o =5 V que tenga la I_{FB} =1A y la I_{SC} =300mA.
- P11.6 La figura P11.6 muestra el esquema de una fuente de alimentación doble basada en regulador de tensión positivo $\mu A7805$ y negativo $\mu A7905$. Determinar la tensión de salida V_{o1} y V_{o2} . Calcular la amplitud mínima

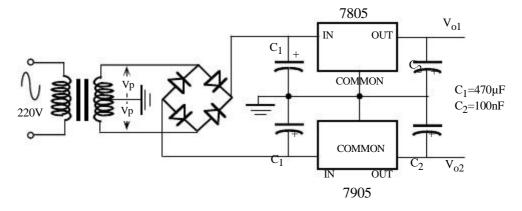


Figura P11.6

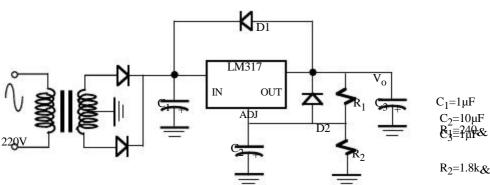


Figura P11.7

de salida del transformador (V_p) si ambos reguladores tienen un *dropout* de 2 V. Dato: V $_d$ =0.7 V.

- P11.7 En la figoura P11.7 se presenta un circuito práctico que utiliza el regulador de tensión LM317 para proporcionar una tensión de salida V_o. Los condensadores C₁, C₂ y C₃ eliminan la presencia de rizado y los diodos D1 y D2 son de protección del regulador y que en condiciones normales están a corte. Determinar la tensión de salida de este circuito.
- P11.8 Demostrar que el regulador de tensión de la figura P11.8 se está comportando como una fuente de intensidad de valor $\rm I_{o}$.

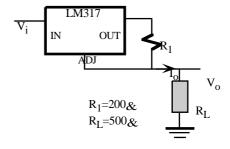


Figura P11.8

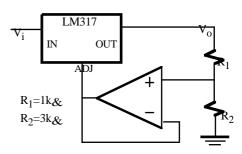


Figura P11.9

P11.9 Calcular el valor de V_o del circuito de la figura
 P11.9. Determinar el valor máximo de las resistencias para asegurar la corriente mínima

de salida exigida por el LM317.

P11.10 El regulador de tensión LM317 del circuito de la figura P11.10 tiene un transistor de potencia adicional para incrementar la intensidad de carga IL. Obtener la expresión de IL en función de Ia intensidad de entrada IO de este regulador. Si el LM317 es capaz de proporcionar una intensidad de salida máxima de 0.5 A, determinar el valor de la II. (max).

Nota: Despreciar la I_{ADJ} frente al resto de las intensidades.

Dato: $h_{FE}=30$.

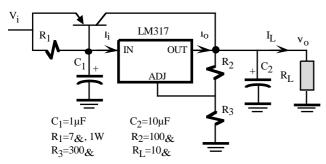


Figura P11.10

P11.11 En la figura P11.11 se muestra el circuito electrónico de control de un ventilador cuya velocidad de giro sea dependiente de la temperatura. El control de la temperatura se realiza mediante el termistor R_T con un valor de resistencia que se puede expresar mediante la siguiente ecuación:

La velocidad de giro del ventilador es variable con la tensión (V_C) en sus terminales , de forma que su velocidad angular expresada en rpm (revoluciones por minuto o número de vueltas por minuto) viene dada por la siguiente ecuación

siendo $V_{C(min)}$ = 5V la tensión mínima necesaria para que comience a girar.

Para este circuito, se pide:

- a) Calcular la W_c del ventilador cuando la temperatura T=25°C.
- b) Temperatura mínima para que el ventilador comience a girar.
- c) Determinar la W_c máxima de giro.

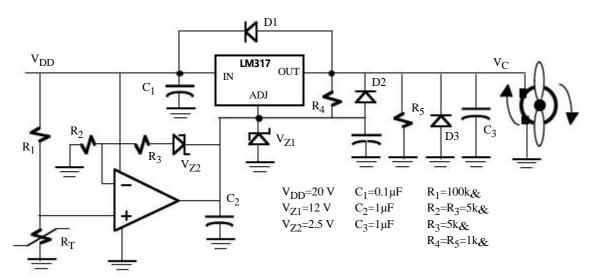


Figura P11.11

TEMA 12

Introducción a los tiristores

12.1.- Introducción

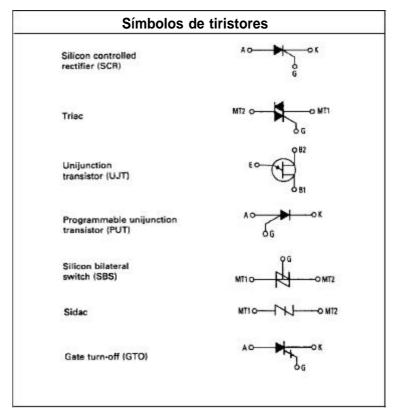


Figura 12.1. Símbolos de tiristores más comunes.

La electrónica de potencia concierne a los circuitos con tiristores, a su diseño y a su función en el control de potencia en un sistema. Existen gran variedad de tiristores, pero todos ellos tienen ciertas propiedades en común: son dispositivos de estado sólido que se "disparan" bajo ciertas condiciones pasando de un estado de alta impedancia a uno de baja, estado que se mantiene mientras que la corriente y la tensión sean superiores a un valor mínimo denominado niveles de mantenimiento. Estructuralmente, todos los tiristores consisten en varias capas alternadas de silicio dopado con impurezas p y n. El disparo de un tiristor se realiza inyectando corrientes en esas uniones de forma que, mediante un reacción regenerativa, conmuta a conducción y lo mantiene en este estado aunque la señal de disparo sea retirada, siempre que se verifiquen unos requerimientos mínimos de tensión y corriente. Estas características hacen que los tiristores sean mucho más útiles que los conmutadores mecánicos, en términos de flexibilidad, duración y velocidad. Estos dispositivos se utilizan en control de potencia, convertidores DC-DC o DC-AC o AC-DC o AC-AC, motores, luz incandescente, etc. En la figura 12.1 se muestran los

símbolos de los dispositivos pertenecientes a la familia de los tiristores. El rectificador controlado de silicio o *Silicon Controlled Rectifiers* (SCR) es el tiristor de mayor interés hoy en día. Fue introducido en 1956 por los laboratorios de Bell Telephone y son capaces de controlar hasta 10MW con niveles de corriente de hasta 2000A a 18000V. El control de estos dispositivos se realiza a través de transistores, familias lógicas, luz (en triacs optoelectrónicos), transistores de uniunión (UJTs), transistores de uniunión programables (PUTs), conmutadores bidireccionales de silicio (SBSs), etc.

12.2.- Diodo de cuatro capas

El diodo de cuatro capas o diodo Shockley es un dispositivo compuesto por cuatro capas semiconductores npnp, cuya estructura y símbolo se describen en la figuras 12.2.a y 12.2.b. Esencialmente es un dispositivo interruptor. Al aplicar un tensión positiva entre ánodo y cátodo se puede observar que la unión J1 y J3 está polarizada en directa, y la unión J2 polarizada en inversa. En estas condiciones únicamente circula una corriente muy baja (despreciable) y el dispositivo se encuentra cortado. Aumentando esta tensión positiva se llega a una tensión $V_{\rm BO}$ de ruptura o avalancha donde la corriente crece de forma abrupta y la caída de tensión decrece de la misma manera. En este momento, el diodo ha conmutado desde el estado de bloqueo a conducción.

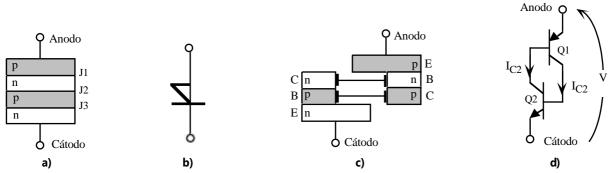


Figura 12.2. Diodo de cuatro capas: a) Estructura, b) símbolo, c) estructura equivalente y d) modelo de conducción.

Una manera sencilla de entender el funcionamiento de este diodo consiste en separar su estructura física en dos mitades (figura 12.2.a). La mitad izquierda es un transistor NPN y la mitad derecha PNP, resultando el circuito mostrado en la figura 12.3.b que normalmente es referido como *candado*.

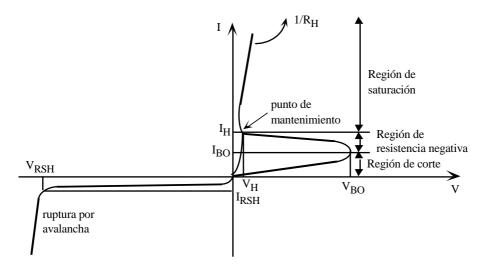


Figura 12.3. Características tensión corriente del diodo de cuatro capas.

Las características eléctricas de un diodo de cuatro capas se muestran en la gráfica de la figura 12.3. En esta gráfica, se pueden identificar dos zonas y cuatro regiones de operación:

1.- Zona directa (V > 0)

1.a) *Región de corte*. El diodo se encuentra en corte con unas corrientes muy bajas. En esta región se puede modelar como una resistencia R_{OFF} de valor

$$R_{OFF} = \frac{V_{BO}}{I_{BO}}$$
 (12.1)

- 1.b) Región de resistencia negativa.. Cuando la tensión entre ánodo y cátodo es suficientemente alta se produce la ruptura de la unión con un incremento muy elevado en corriente comportándose el diodo como si fuera una resistencia negativa debido a la realimentación positiva de su estructura.
- 1.c) Región de saturación o conducción. En esta región, la caída de tensión entre ánodo y cátodo está comprendida entre 0.5V y 1.5 V, prácticamente independiente de la corriente. Se mantendrá en este estado siempre que la tensión y corriente alcancen unos valores mínimos conocidos como niveles de mantenimiento definidos por V_H e I_H.

2.-**Zona inversa** (V < 0)

2.a) Región de ruptura. El diodo puede soportar una tensión máxima inversa V_{RSM} que superado ese valor entra en conducción debido a fenómenos de ruptura por avalancha.

12.2.1.- SIDAC

El SIDAC es un dispositivo bilateral de disparo de alta tensión y corriente. Es básicamente un diodo de cuatro capas con unas características eléctricas simétricas. En la figura 12.4.a se describe su estructura física, en la figura 12.4.b el símbolo de este dispositivo y en la figura 12.4.c sus características eléctricas simétricas. El SIDAC se utiliza en aquellas aplicaciones que se necesitan una tensión de disparo V_{BO} cuyos valores están comprendidos entre 120 V y 270 V (típicos).

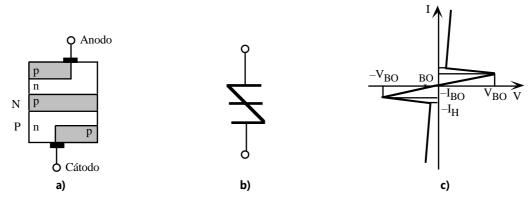
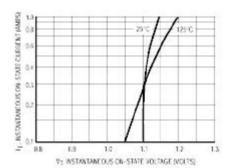



Figura 12.4. SIDAC: a) estructura física, b) símbolo y c) características I-V.

El MKP3V120 de Motorola es un ejemplo típico de un SIDAC, con una corriente máxima de 1A y una tensión de ruptura de V_{BO} =120 V (pertenece a la serie MKP3VXXX en donde las tres últimas cifras definen la

 V_{BO}). En la figura 12.5 se indican sus características I-V en estado de conducción. En este caso, la tensión ánodo-cátodo es aproximadamente ~1.1V prácticamente independiente de la corriente. Una de las aplicaciones más típicas del SIDAC es como generador de diente de sierra en donde se aprovecha las características de disparo y bloqueo de este dispositivo. En la figura 12.6.a se presenta el esquema de este circuito basado en el MKP3V120. Las principales características de este dispositivo son: $V_{TE}V_{H}$ =1.1V, I_{H} =100mA (máx), V_{BO} =120 V (typ), I_{BO} =200μA (máx). En la figura 12.6.b se muestra la forma de onda de V_{o} que se asemeja a un diente de sierra. El funcionamiento del circuito es el siguiente. El condensador se carga a través de R cuando el SIDAC está cortado. En estas condiciones, el dispositivo se comporta como una resistencia R_{OFF} de valor

Figura 12.5. Características I-V en conducción del MKP3V120.

$$R_{OFF} = \frac{V_{BO}}{I_{BO}} = \frac{120V}{200xA} = 600k\&$$
(12.2)

Esta resistencia es tan elevada que a efectos prácticos se puede considerar como despreciable. La ecuación del carga del condensador parte de una tensión inicial V_H (V_H =1.1V), correspondiente a la tensión de mantenimiento del SIDAC, hasta la tensión final V_{CC} (V_{CC} =200V). Esta ecuación es

$$V_{o}(t) = V_{CC} + (V_{H} \quad V_{CC}) \exp \left\{ \frac{t}{RC} \right\}$$
(12.3)

La tensión $V_{O(t)}$ evoluciona de forma exponencial tal como se muestra en la figura 12.6.b. Este proceso de carga del condensador finalizará cuando el SIDAC entre en conducción, situación que se produce cuando la tensión $V_{O(t)}$ alcance la tensión de ruptura, es decir, el proceso de carga durará un tiempo $V_{O(t)}$ en tomar el valor $V_{O(t)}$, es decir, $V_{O(t)} = V_{O(t)} = V_{O(t)}$

Figura 12.6. a) SIDAC como generador de diente de sierra. b) Forma de onda de V_o.

En el momento que entra en conducción el SIDAC, éste descarga rápidamente el condensador C hasta su tensión de mantenimiento (V_H) . El dispositivo estará permanentemente en ese estado siempre que se asegure la corriente de mantenimiento I_H de 100mA. Pero en este circuito, la corriente que circula por R es

$$I_R = \frac{V_{CC} V_H}{R} = \frac{200V 1.1V}{5k} H 40mA < I_H = 100mA$$
 (12.5)

es menor que la corriente de mantenimiento, luego el SIDAC pasará a estado de corte de forma natural permitiendo que el condensador se cargue nuevamente a través de R y se repita el proceso indefinidamente. Si se desea que el SIDAC permanezca en conducción permanente con $V_{O=VH}$ es preciso asegurar la corriente de mantenimiento, para lo cual la resistencia R tiene que ser menor que el valor de la resistencia crítica obtenido por la siguiente expresión

$$R_{crítica} = \frac{V cc V_{r1}}{I_{H}} = \frac{200V 1.1V}{100mA} H 2k\&$$
(12.6)

12.2.2.- SBS

El SBS o *Silicon Bidirectional Switch* es un dispositivo de baja potencia simétrico para aplicaciones de disparo más versátil que el SIDAC. Tiene además un terminal adicional (*gate* o G) que permite modificar sus características de disparo con pequeños pulsos de corriente (decenas de μ A). Su reducido coste, alta velocidad y capacidad para disparar puertas de tiristores con altos valores de corriente hace que este dispositivo sea muy útil en muchas aplicaciones. EL SBS no es solamente un versión mejorada del diodo de cuatro capas, sino que es fabricado como un circuito integrado constituido por transistores, diodos y resistencias. La figura 12.7.a muestra su símbolo, la figura 12.7.b su estructura a nivel circuital y la figura 12.7.c sus características I-V. El MBS4991 de Motorola es un ejemplo típico de un SBS simétrico. Sus parámetros característicos de acuerdo a la gráfica de la figura 12.7.c son: V_S =8 V_s =175 μ A, I_s =0.7 mA y V_s =1.4 V_s El disparo de este dispositivo se puede realizar bien superando la tensión V_s 0 bien aplicando una corriente de puerta I_s =100 μ A.

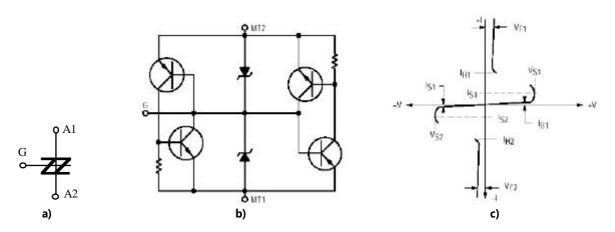


Figura 12.7. SBS: a) símbolo, b) circuito equivalente y c) características I-V.

12.3.- Rectificador gobernado de silicio o SCR

El SCR o *Silicon Controled Rectifier* es un dispositivo triterminal (A o ánodo, C o cátodo y G o *gate* o puerta de control) muy similar al diodo de cuatro capas descrito en la anterior sección pero que posee una entrada adicional (G) que permite disparar el dispositivo antes de alcanzar la V_{BO}. En la figura 12.8.a se muestra el símbolo del SCR y en la figura 12.8.b su modelo a nivel transistor. En el modelo a nivel de transistor se observa claramente que al introducir una corriente por la línea G se produce la conducción de los transistores, es decir, el

disparo del dispositivo sin ser necesario alcanzar la V_{BO} . La figura 12.9 permite ver claramente como las características del SCR varían con la corriente de su puerta cuyos valores son del orden de miliamperios o inferiores.

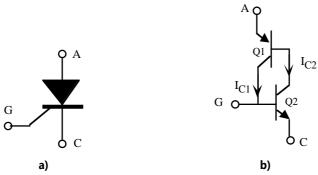


Figura 12.8. a) símbolo del SCR, b) Modelo a nivel de transistor.

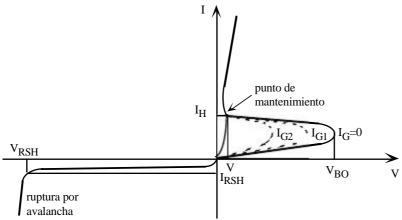


Figura 12.9. Características I-V del SCR.

A continuación se detallan algunos parámetros característicos de los SCR.

- *Tiempo de conducción (Turn-on Time)*. Tiempo de duración mínima de la tensión de disparo para pasar el SCR de bloqueo a conducción. Este tiempo tiene dos componentes: $T_{ON} = t_d + t_r$, siendo t_d el tiempo de retraso (*delay time*) y t_r el tiempo de subida (*rise time*). Por ejemplo, el 2N5060 tiene el $T_{ON} = t_d + t_r = 3\mu s + 0.2\mu s = 3.2\mu s$.
- *Tiempo de corte (Turn-off Time)*. Tiempo que el SCR puede permanecer por debajo de las condiciones de mantenimiento. El 2N5060 tiene un T_{OFF} = t_q de $10\mu s$.
- *Máxima corriente de conducción*. Máxima corriente eficaz que puede circular por el SCR durante el estado de conducción. Para el 2N5060, la $I_{T(rms)}$ =0.8A.
- Velocidad crítica de elevación. Variaciones muy rápidas de tensión entre el ánodo y cátodo en un SCR pueden originar un disparo indeseado. Para evitar este problema, la variación de tensión ánodo-cátodo no debe superar un valor conocido como velocidad crítica de elevación (dv/dt); si se supera este valor además de producir el disparo puede llegar a deteriorar el dispositivo. El 2N5060 tiene un dv/dt=30V/µs. A veces transitorios en las líneas de alimentación pueden originar problemas de comportamiento del SCR al ser superado su velocidad crítica

de elevación. Los circuitos de protección contra transitorios de corriente (figura 12.10.a) y transitorios de tensión (figura 12.10.b) evitan este indeseado disparo. Básicamente son filtros basados en RC o inducciones que eliminan esas señales espúreas.

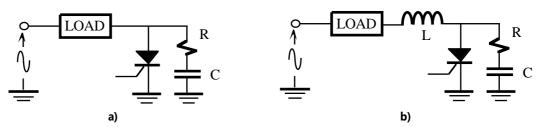
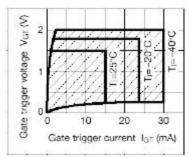


Figura 12.10. Circuitos de protección contra transitorios de a) tensión y b) intensidad.


12.4.- Activación o disparo y bloqueo de los tiristores

El tiristor es un dispositivo de estado sólido que su modo de operación emula a un relé. En estado de conducción tiene una impedancia muy baja que permite circular grandes de niveles de corriente con una tensión ánodo-cátodo del orden de 1V. En estado de corte, la corriente es prácticamente nula y se comporta como un circuito abierto. A continuación se describen las diferentes maneras de activar o disparar y de bloqueo de un tiristor.

12.4.1.- Activación o disparo de un tiristor

Existen cuatro maneras de poner a un tiristor en estado de conducción:

a) Activación o disparo por puerta. El método más común para disparar un tiristor es la aplicación de una corriente en su puerta. Los niveles de tensión y corriente de disparo en la puerta deben tener un rango de valores comprendidos dentro de una zona de disparo de seguridad. Si se sobrepasa ese límite puede no dispararse el tiristor o puede deteriorarse el dispositivo; por ejemplo, para el 2N5060 la máxima potencia eficaz que puede soportar la puerta es $P_G(av)=0,01$ W. Gráficamente, en la figura 12.11 se muestra la forma típica de esa zona de seguridad de disparo del SCR TF521S de Sanken Electric; obsérvese la su elevada dependencia con la temperatura. Este tiristor soporta corrientes de hasta $I_{T(rms)}=5$ A y la corriente máxima de disparo es $I_{GT(max)}=15$ mA a 25°C para una

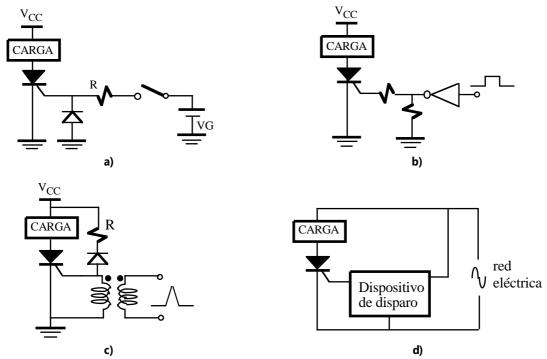


Figura 12.11. Zona de seguridad de disparo del SCR TF521S.

 $V_{GT(max)}$ =2.5 V. Otro ejemplo es el C701 de SPCO capaz de soportar 1300A con una corriente I_{GT} =500mA. Además, el disparo debe tener una duración dependiente del tiristor con valores típicos de 1µseg para que resulte eficaz. El tiempo de conexión o de activación es el tiempo que tarda en conducir el tiristor desde que se ha producido el disparo. Los valores típicos de tiristores comerciales están alrededor de 1 a 3µseg, aunque para aplicaciones especiales como son los moduladores de impulsos de radar se fabrican tiristores con valores por debajo de 100nseg.

b) <u>Activación o disparo por luz.</u>. Un haz luminoso dirigido hacia una de las uniones del tiristor provoca su disparo. Son los dispositivos conocidos como foto-SCR o LASCR y sus derivados (foto-TRIAC, opto-TRIAC, etc). El SP-101 de Sunpower es un ejemplo típico de un LASCR de 2 A que precisa de una radicación luminosa efectiva de 24mW/cm² con una longitud de onda de 850nm para su activación.

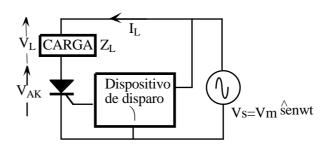
- c) <u>Activación por tensión de ruptura</u>. Una aumento de la tensión ánodo-cátodo puede provocar fenómenos de ruptura que activa el tiristor. Esta tensión de ruptura directa (V_{BO}) solamente se utiliza como método para disparar los diodos de cuatro capas.
- b) <u>Disparo por aumento de dv/dt</u>. Un rápido aumento de la tensión directa de ánodo cátodo puede producir una corriente transitoria de puerta que active el tiristor. Generalmente se elimina este problema utilizando circuitos de protección basados en R, C o L (figuras 12.10.a y 12.10.b). Valores típicos de dv/dt están comprendidos entre 5V/µseg a 500V/µseg.

Figura 12.12. Circuitos de disparo de SCR. **a)** y **b)** circuitos de disparo en DC, **c)** circuito de disparo por impulso, y **d)** circuito de disparo controlado por señal alterna.

Existen numerosos circuitos de disparo de tiristores que pueden ser clasificados en tres tipos básicos en función del tipo de señal de disparo: DC, impulso o fase de alterna. Los circuitos de disparo en DC están basados en un interruptor mecánico o electrónico (figura 12.12.a) que incluyen circuitos de protección para evitar daños al tiristor. Estás señales también pueden ser generadas desde un ordenador o cualquier circuito de control digital (figura 12.12.b). Los circuitos de disparo por impulso están basados generalmente en un transformador de acoplo que transmite el pulso de disparo (figura 12.12.c). Este transformador permite el aislamiento eléctrico entre el tiristor y el circuito de control y precisa menor potencia de disparo. Sin embargo, son más voluminosos debido al tamaño del transformador y suelen ser sustituidos por opto-acopladores luminosos. Por último, los circuitos de disparo en alterna están diseñados para sincronizar la fase entre el suministro en alterna y el disparo que permita la regulación en potencia (figura 12.12.d). Debido a la importancia de este último tipo de disparo, se va a dedicar un apartado completo a su estudio.

12.4.2.- Bloqueo de un tiristor

La conmutación en corte o bloqueo es el proceso de poner en estado de corte al tiristor que puede realizarse


de tres formas: conmutación natural, polarización inversa o conmutación por puerta.

- a) <u>Conmutación natural</u>.. Cuando la corriente del ánodo se reduce por debajo de un valor mínimo, llamado corriente de mantenimiento, el tiristor se corta. Sin embargo, hay que señalar que la corriente nominal de un tiristor es del orden de 100 veces la corriente de mantenimiento. Para reducir esa corriente es preciso abrir la línea, aumentando la impedancia de carga o derivando parte de la corriente de carga a un circuito paralelo, es decir, cortocircuitando el dispositivo.
- b) <u>Corte por polarización inversa</u>. Una tensión inversa ánodo-cátodo tenderá a interrumpir la corriente del ánodo. La tensión se invierte en un semiperiodo de un circuito de alterna, por lo que un tiristor conectado a la línea tendrá una tensión inversa en un semiperiodo y se cortará. Esto se llama conmutación por fase o conmutación de línea alterna.
- c) <u>Corte por puerta</u>. Algunos tiristores especialmente diseñados, como los GTO, se bloquean con una corriente de puerta negativa.

El tiempo de conmutación en corte es el tiempo que tarda en bloquearse un tiristor. Con conmutación natural su valor está comprendido entre 1 a 10µseg, mientras que conmutación forzada puede ser de 0.7 a 2µseg. Sin embargo, existen gran variedad de tiristores diseñados para tener tiempos de conmutación muy bajos.

12.5.- Regulación en potencia de un SCR

Existe un gran variedad de aplicaciones de potencia basados en los tiristores como elementos de control. Su propiedad de conmutación de corte a conducción y viceversa resulta muy útil cuando se desea controlar la transferencia de potencia a una carga. Las aplicaciones más comunes de uso doméstico son los reguladores de luz, control de velocidad de motores, etc.

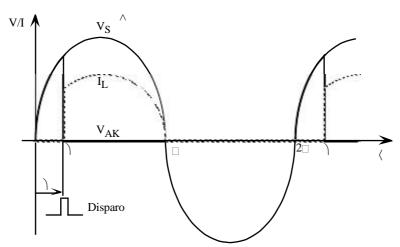


Figura 12.13. Circuito regulador de potencia basado en un SCR.

En la figura 12.13 se muestra la estructura básica de un circuito regulador de potencia básico. Se quiere entregar una determina energía de la red eléctrica a una carga (Z_L) y, para ello, se utiliza un tiristor (en este caso un SCR) como dispositivo de control y un circuito de disparo que controla ese tiristor. Este circuito de disparo introduce un desfase \gamma respecto al inicio de la onda sinusoidal; a \gamma se le denomina ángulo de desfase o de disparo y a \quad \gamma \gamma angulo de conducci\u00f3n. En la figura 12.14 se representa las formas de onda del regulador de potencia. Se identifican tres zonas del funcionamiento del tiristor:

1) $\mathbf{0} \delta \langle \cdot \rangle$ El SCR está bloqueado. En estas condiciones no circula ninguna corriente por la carga $(I_L=0)$ y la V_{AK} $\stackrel{\vee}{=} s V_{n \langle \cdot \rangle}$.

- 2) $\delta < \Box$. En el instante <= el circuito de disparo aplica un pulso que hace entrar el SCR a conducción. Aparece una corriente por la carga de valor $I_L = V_m^l sen < Z_L$, si se desprecia la caída de tensión en el SR $(V_{AK}\sim 0V)$. En esas condiciones, $V_S = V_L + V_{AK} = V_S$.
- 3) \Box δ \langle < **2** \Box . En el instante \langle = \Box el SCR conmuta a corte de forma natural. En el semiperiodo negativo el SCR se mantiene a corte porque la tensión del ánodo es inferior a la del cátodo. La corriente es nula $(I_L=0)$ y la $V_{AK} = V_m^{\dagger} sen \langle$.

Figura 12.14. Formas de onda del circuito de la figura 12.13.

En términos eficaces, la corriente eficaz (rms) entregada a la carga se obtiene mediante la siguiente ecuación

$$I_{rms} = \sqrt{\frac{1}{2\Box}} \frac{2\Box}{10} \frac{2}{10} I_{L} d\zeta = \sqrt{\frac{1}{2\Box}} \sqrt{\frac{2}{1}} I_{m} \operatorname{sen}(\zeta) d\zeta = \sqrt{\frac{1}{2\Box}} \sqrt{\frac{2}{10}} \frac{\sqrt{2}}{2} \left| \frac{\zeta}{4} \right| \frac{\operatorname{sen}(2)}{4}$$

$$(12.7)$$

y, de una manera similar, la tensión eficaz (rms) de la carga

$$V_{rms} = \sqrt{\frac{1}{2\Box}} \frac{2\Box}{10} (V_L) d\zeta = \sqrt{\frac{V_m^2}{2\Box}} \sqrt{\frac{\sec n \angle \zeta}{2\Box}} \frac{1}{2} \sqrt{\frac{\sec n \angle \zeta}{12}}$$
(12.8)

La potencia eficaz entregada a la carga se define como el producto de la corriente eficaz por la tensión eficaz.

$$P_{rms} = \frac{1}{I_L} V_L d\zeta = V_{rms} I_{rms} = \frac{V_{rms}^2}{Z_L} Z_L$$
 (12.9)

12.6.- Variantes del SCR

Existen otros dispositivos de cuatro capas cuyo modo de funcionamiento es similar a la de un SCR. En esta sección se realiza una breve descripción de las variantes del SCR más importantes.

12.6.1.- Foto-SCR o LASCR

El foto-SCR o SCR activado por luz (*light activated SCR* o LASCR) es, como su propio nombre indica, un SCR cuyo disparo es controlado por luz. Cuando la luz incidente es suficientemente intensa, el SCR se dispara y permanece en conducción aunque desaparezca esa luz. En la figura 12.15.a se muestra su símbolo y en la figura 12.15.b aparece una aplicación sencilla del foto-SCR con una resistencia ajustable que controla la intensidad de luz incidente de disparo. Un ejemplo de un LASCR es el SP-101 de SunPowe.r que se activa cuando la luz incidente es de 24mW/cm².

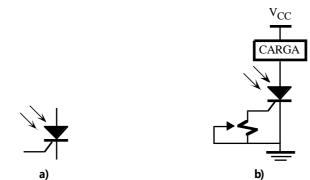


Figura 12.15. Foto-SCR o LASCR: a) Símbolo y b) ajuste de sensibilidad a la luz.

12.6.2.- GTO

El GTO o *Gate Turn-Off SCR* es un tiristor que puede ser disparado con un pulso positivo a su terminal gate y bloqueado si se aplica un impulso negativo a ese mismo terminal. El GTO se emplea actualmente en muchas aplicaciones interesantes en el dominio de altas potencias cuyo control se realiza fácilmente mediante transistores bipolares. Los bajos requerimientos de potencia de su control facilitan la aplicación de técnicas de modulación de anchura de pulsos. En la figura 12.16 se indica su símbolo. El

MGTO1000/2000 de Motorola es un GTO diseñado para aplicaciones de alta velocidad y es capaz de porporcionar hasta 18 A.

12.6.3.- PUT

El PUT o programmable unijunction transistor perteneciente a la familia de los dispositivos uniunión y sus características son similares al SCR. En la figura 12.17.a se indica su símbolo. Es un dispositivo de disparo ánodo-puerta (anode-gate) puesto que su disparo se realiza cuando la puerta tenga una tensión más negativa que el ánodo, es decir, la conducción del PUT se realiza por control de las tensiones en sus terminales. Como ejemplo sencillo, la figura 12.17.b muestra el esquema de un oscilador de relajación basado en este dispositivo. La tensión de puerta está fijada a un valor constante a través de las resistencias R_1 y R_2 . Si inicialmente el condensador está descargado, la tensión del ánodo es menor que la de la puerta ($V_A < V_G$) y el PUT está cortado. En estas condiciones, el condensador se carga a través de R aumentando la tensión del ánodo. Llegará un momento en que $V_A = V_G$ y, en ese instante, se dispara el PUT el cual descarga bruscamente el condensador C produciendo una caída de tensión en la resistencia R_o . Si R y R_o tienen un valor que impida circular a través del PUT la corriente de mantenimiento mínima de conducción el dispositivo se cortará y el condensador se carga nuevamente a través de R repitiéndose el proceso.

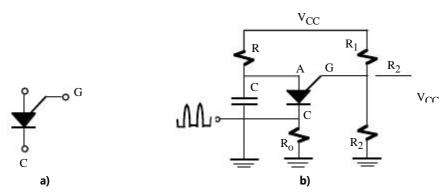


Figura 12.17. a) Símbolo del PUT y b) oscilador basado en un PUT.

12.6.4.- TRIAC

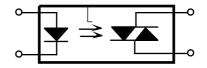

Un TRIAC (*TRlode for Alternative Current*) es un SCR bidireccional que se comporta como dos SCR en paralelo e invertidos, de tal manera que este dispositivo puede controlar corriente en cualquier dirección. Normalmente, tiene una tensión de ruptura alta y el procedimiento normal de hacer entrar en conducción a un TRIAC es a través de un pulso de disparo de puerta (positivo o negativo). La figura 12.18.a muestra su símbolo y la figura 12.18.b su modelo equivalente basado en dos SCR conectados en oposición. Ejemplos típicos de TRIACS: BT136 (de 5 A) y el BT138 (16A) de Philips y la serie MAC de Motorola con corrientes de 8A (MAC97-8) hasta 350 A (MAC224A4).

Figura 12.18. a) Símbolo del TRIAC y b) Modelo equivalente en SCRs.

12.6.5.- TRIAC con acoplado óptico (opto coupler TRIAC)

Los TRIACs acoplados ópticamente combinan un diodo emisor de luz (LED) con un TRIAC foto-detector (foto-TRIAC) dentro de un mismo encapsulado opaco con un esquema mostrado en la figura 12.19. Al no existir conexión eléctrica entre la entrada y la salida, el acoplo es unidireccional (LED al foto-TRIAC) y permite un aislamiento eléctrico entre ambos dispositivos de hasta 7500 V (typ). Además, algunos foto-TRIAC incluyen una circuito de detección de

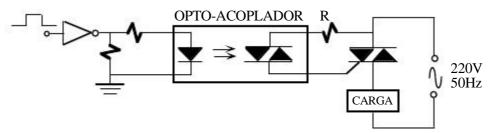


Figura 12.19. Esquema de un opto-TRIAC.

paso por cero que permite sincronizar señales de la red eléctrica con señales de control del LED para ajustar el ángulo de conducción.

Como ejemplo de estos circuitos se encuentra el MOC3009 (Motorola) que necesita una corriente en el LED de 30mA para disparar el foto-TRIAC o el MOC3021 (Motorola) que únicamente requiere 10mA. Cuando el LED está apagado, el foto-TRIAC está bloqueado conduciendo una pequeña corriente de fuga denominada I_{DRM} (*peak-blocking current*). Cuando el diodo conduce, dispara al foto-TRIAC pudiendo circular entre 100mA y 1A. Al no ser un dispositivo que soporte grandes niveles de potencia, el propio foto-TRIAC en muchos casos actúa

sobre el control de un TRIAC de mucho mayor potencia, tal como se indica en la figura 12.20. En este circuito, una señal digital (por ejemplo, una señal de un microcomputador) activa el opto-acoplador que a su vez activa el TRIAC de potencia conectado a la red eléctrica; el valor de R está comprendido entre 50& y 500&.

Figura 12.20. Esquema de un opto-acoplador TRIAC para activar un TRIAC de mayor potencia.

12.7.- El transistor UJT o de uni-unión

El transistor de uni-unión (*unijunction transistor*) o UJT está constituido por dos regiones contaminadas con tres terminales externos: dos bases y un emisor. En la figura 12.21.a aparece la estructura física de este dispositivo. El emisor está fuertemente dopado con impurezas p y la región n débilmente dopado con n. Por ello, la resistencia entre las dos bases, R_{BB} o *resistencia interbase*, es elevada (de 5 a $10K_{\&}$ estando el emisor abierto). El modelo equivalente representado en la figura 12.21.b está constituido por un diodo que excita la unión de dos resistencias internas, R_1 y R_2 , que verifican R_{BB} = R_1 + R_2 . Cuando el diodo no conduce, la caída de tensión en R_1 (V_1) se puede expresar como

$$V_{1} = \frac{R_{1}}{R_{1} + R_{1}} V_{B2B1} = \frac{R_{1}}{R_{BB}} V_{B2B1} = |V_{B2B1}|$$
(12.10)

en donde V_{B2B1} es la diferencia de tensión entre las bases del UJT y \mid es el factor de división de tensión conocido como *relación intrínseca*. El modelo de este dispositivo utilizando transistores se muestra en la figura 12.21.c, cuya estructura es muy similar a un diodo de cuatro capas. Cuando entra en conducción los transistores la caída de tensión en R_1 es muy baja. El símbolo del UJT se muestra en la figura 12.21.d.

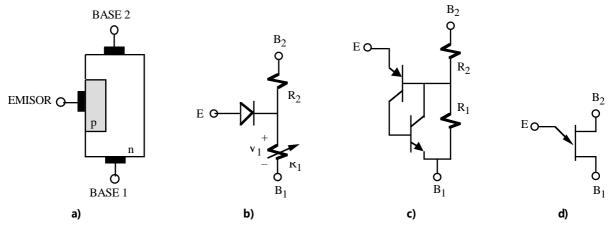


Figura 12.21. Transistor UJT. a) Estructura física, b) modelo equivalente, c) circuito equivalente y d) símbolo.

12.7.1.- Funcionamiento de un UJT

El funcionamiento de un UJT es muy similar al de un SCR. En la gráfica de la figura 12.22 se describe las

características eléctricas de este dispositivo a través de la relación de la tensión de emisor (V_E) con la corriente de emisor (I_E) . Se definen dos puntos críticos: punto de pico o *peak-point* (V_P, I_P) y punto de valle o *valley-point* (V_V, I_V) , ambos verifican la condición de $dV_E/dI_E=0$. Estos punto a su vez definen tres regiones de operación: región de corte, región de resistencia negativa y región de saturación, que se detallan a continuación:

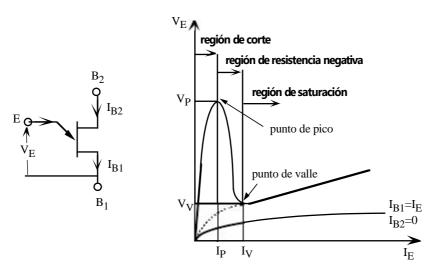


Figura 12.22. Características eléctricas de un UJT.

<u>Región de corte</u>. En esta región, la tensión de emisor es baja de forma que la tensión intrínseca mantiene polarizado inversamente el diodo emisor. La corriente de emisor es muy baja y se verifica que V_E<V_P e I_E < I_P. Esta tensión de pico en el UJT viene definida por la siguiente ecuación

$$V_{P} = |V_{B2B1} + V_{F}| \tag{12.11}$$

donde la V_F varía entre 0.35 V a 0.7 V con un valor típico de 0.5 V. Por ejemplo, para el 2N2646 es de 0.49V a 25°C. El UJT en esta región se comporta como un elemento resistivo lineal entre las dos bases de valor R_{BB} .

- Región de resistencia negativa. Si la tensión de emisor es suficiente para polarizar el diodo de emisor, es decir, $V_E=V_P$ entonces el diodo entra en conducción e inyecta huecos a B_1 disminuyendo bruscamente la resistencia R_1 debido a procesos de recombinación. Desde el emisor, se observa como el UJT disminuye su resistencia interna con un comportamiento similar a la de una resistencia negativa ($dV_E/dI_E < 0$). En esta región, la corriente de emisor está comprendida entre la corriente de pico y de valle ($I_P < I_E < I_V$).
- Región de saturación. Esta zona es similar a la zona activa de un tiristor con unas corrientes y tensiones de mantenimiento (punto de valle) y una relación lineal de muy baja resistencia entre la tensión y la corriente de emisor. En esta región, la corriente de emisor es mayor que la corriente de valle ($I_E > I_V$). Si no se verifica las condiciones del punto de valle, el UJT entrará de forma natural a la región de corte.

En la figura 12.22 también se observa una curva de tipo exponencial que relaciona la V_E y la I_E cuando la base B_2 se encuentra al aire (I_{B2} =0). Esta curva tiene una forma similar a la característica eléctrica de un diodo y representa el comportamiento del diodo de emisor.

12.7.2.- Oscilador de relajación con UJT

Una de las aplicaciones más típicas del UJT es la construcción de osciladores de relajación que se utilizan en muchos casos como circuito de control de SCRs y TRIACs. El esquema eléctrico de este circuito se muestra en la figura 12.23.a. Cuando el UJT está en la región de corte, el condensador C se carga a través de R. Este proceso de carga finalizará si la tensión de emisor (V_C) es suficiente para entrar al UJT en la región de resistencia negativa (V_C = V_P), en cuyo caso la corriente de emisor descarga bruscamente el condensador hasta alcanzar la tensión de valle (V_C = V_V). En estas condiciones, si el circuito ha sido diseñado para que la resistencia R no proporcione la suficiente corriente de mantenimiento (I_E < I_V) entonces el UJT conmutará de forma natural a corte y el condensador volverá a cargarse de nuevo a través de R. La figura 12.23.b indica el diagrama temporal de las tensiones V_C , V_{OB1} y V_{OB2} . En resumen, para asegurar que el circuito de la figura 12.23 se comporta como un oscilador, R debe verificar que

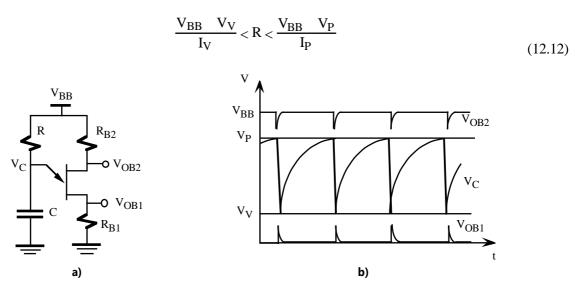


Figura 12.23. El UJT como oscilador de relajación: a) esquema eléctrico y b) diagram temporal.

Las ecuaciones que verifica este oscilador son las siguientes.

• V_C . Proceso de carga del condensador se realiza a través de R. Se inicia con la tensión V_V y tiende a cargarse hasta V_{CC} . La tensión V_C viene dada por la siguiente ecuación:

$$V_{C(t)} = V_{CC} + (VV \quad V_{CC}) \exp \left\{ \frac{t}{RC} \right\}$$
(12.13)

• *Periodo de oscilación*. El periodo de oscilación está definido por el tiempo (t_o) que tarda el condensador en alcanzar la tensión de activación del UJT (V_P) . Es decir, el tiempo t_o necesario para que la tensión $V_C(t=t_o)=V_P$ se obtiene a partir de la ecuación 12.13 y vale

$$t_{0} = RC \ln \left| \frac{V \sim V_{\bullet}}{V_{CC} V_{P}} \right|$$
 (12.143)

• V_{OB1} y V_{OB2} . Estas tensiones las proporciona el fabricante en forma de gráfica en función de las resistencias R_{B1} y R_{B2} asociadas a la base del UJT; se supone que R_{B1} y R_{B2} << R_{BB} . El tiempo de validez de

estas tensiones depende del tiempo de conmutación y corte del UJT y suelen ser del orden del 1% del periodo de oscilación del circuito. Por ejemplo, el 2N2646 produce una tensión V_{OB1}=5 V (typ) si R_{B1}=20& y V_{B2B1}=20 V.

12.8.- Algunas aplicaciones típicas de los tiristores

Los tiristores son sumamente populares en el control de potencia en cargas resistivas e inductivas como motores, solenoides, calefactores, etc. Comparados con los dispositivos equivalentes mecánicos como son los relés, los tiristores ofrecen mayor fiabilidad, mejores prestaciones y menor costo. En esta sección se analizan algunas aplicaciones típicas con tiristores para dar una idea de sus múltiples posibilidades.

12.8.1.- Regulación de luz

Una de las aplicaciones más típicas de uso doméstico es el regulador de luz. La figura 12.24 muestra un esquema de este circuito basado en el TRIAC MAC218A de Motorola y cuyo control de disparo se realiza a través de un SBS. La resistencia $R_1 + R_2$ carga el condensador C_1 a través de la propia tensión de alimentación en alterna y cuando se alcanza la tensión de ruptura del SBS, éste dispara el TRIAC haciendo circular la corriente por la carga (lámpara). El uso de TRIAC y SBS permite el control de potencia en semiperiodos positivos y negativos. El ángulo de conducción se controla a través de la resistencia variable R_1 ; contra más pequeño sea su valor el ángulo de conducción será mayor, y viceversa. Las ecuaciones de funcionamiento del circuito son difíciles de extraer pero en la figura 12.24 se indican los valores típicos de los diferentes componentes. Los diodos, la resistencia de R_4 y el condensador C_2 actúan como elementos de protección.

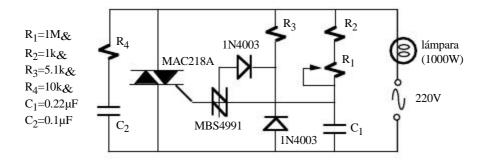


Figura 12.24. Regulador de luz basado en un SBS.

Un segundo ejemplo de circuito de regulador de luz se indica en la figura 12.25. En este caso, el UJT 2N4870 es el encargado de disparar al TRIAC. El circuito de polarización del UJT está constituido por un circuito rectificador de diodos, una resistencia y el diodo zener 1N4871 de 22 V; con ello se consigue obtener la señal V_S indicada en la parte inferior de la figura. Esta señal sería prácticamente una onda cuadrada si no existiese el TRIAC. El disparo del TRIAC hace que la caída de tensión en sus terminales sea muy baja (~1 a 2V) anulando el circuito de polarización (V_S ~0V). El UJT actúa como oscilador de relajación cuya frecuencia está determinada por R_1 y C_1 . la activación del UJT dispara a su vez el TRIAC a través de un pequeño transformador. El ángulo de conducción del TRIAC oscila entre \succeq 0° a 170° en cada semiperiodo.

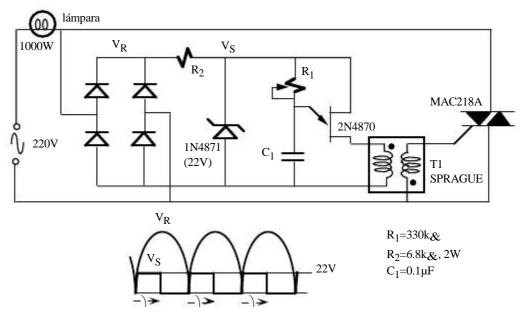


Figura 12.25. Regulador de luz basado en un UJT.

12.8.2.- Control digital de potencia

Otra de las aplicaciones más típicas de los tiristores es el control de potencia realizado a través de señales digitales que proviene de circuitos digitales o microprocesadores. Para evitar que el circuito digital de control sea dañado por la red de alimentación es preciso aislar ambos sistemas. Las técnicas de aislamiento están basadas en transformadores u opto-acopladores. La segunda elección es la más adecuada por dos motivos: direccionalidad y prestaciones. Un opto-acoplador es unidireccional, la señal va en un único sentido a diferencia de un transformador que es bidireccional. Además, presenta mayores prestaciones desde el punto de vista de coste, volumen y fiabilidad. La mayoría de los opto-acopladores no tiene capacidad de conducir grandes corrientes y por ello son utilizados como circuitos de disparo de TRIACs de mayor potencia. En el ejemplo de la figura 12.26 se presenta un regulador de potencia controlado por una señal digital que actúa sobre una carga de alterna. El circuito de control son dos opto-acopladores TRIAC MAC3011 para disparar el TRIAC de potencia MAC218A. El aislamiento entre el circuito digital y el circuito de potencia es total y puede ser diseñado para que la señal digital recorra largas distancias.

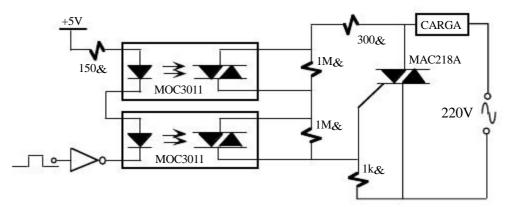


Figura 12.26. Control digital de una carga.

Los microcomputadoras pueden ser utilizados como control de sistemas de potencia. Para ello, se utiliza el

circuito de interfase de entrada/salida de un microcomputador que es un circuito compatible TTL con un fan-out muy bajo y de baja potencia que no permite actuar directamente sobre tiristores. La figura 12.27 indica el circuito completo de control de cargas resistivas (lámparas, resistencias térmicas,...) o inductivas (motores, transformadores,...) realizado a través de un microcomputador. El aislamiento entre el circuito de control y el circuito de potencia se realiza mediante opto-acopladores MAC3011 activados por la salida de puertas TTL de la serie 7400. El problema que presenta el circuito de la figura 12.26 es la ausencia de sincronización entre la señal de control digital y la fase de la línea. Esta falta de sincronización afecta fuertemente a la carga y a los dispositivos de potencia que reducen su vida media de duración. Para resolver este problema, se ha añadido al circuito de la figura 12.27 un detector de paso por cero de la señal alterna constituido por un transformador y el transistor 2N3904. En el colector de este transistor tenemos una onda cuadrada que estará en estado lógico alto únicamente cuando la señal AC de la línea pase por cero; en el resto será bajo. Esto permitirá el paso de la señal de control digital del microprocesador únicamente cuando la señal AC pase por cero.

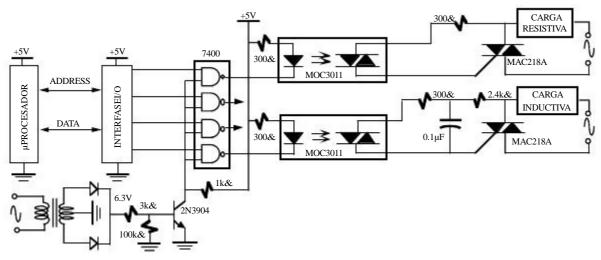
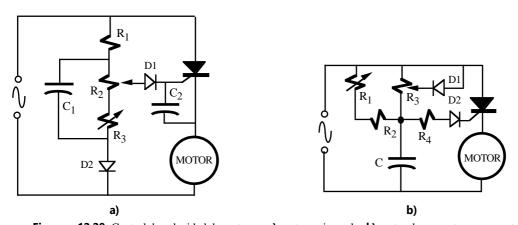



Figura 12.27. Control de potencia mediante un microprocesador.

Figura 12.28. Control de velocidad de motores. **a)** motor universal y **b)** motor de magneto-permanente.

12.8.3.- Control de velocidad de motores

El control de velocidad de los motores se ha realizado en base a SCRs en mayor medida que en TRIACs. A primera vista, el TRIAC presenta mayores ventajas debido a su simetría, lo que le confiere ciertas ventajas frente al SCR que únicamente conduce en un semiperiodo. Sin embargo, el TRIAC tiene unas características dv/dt

inadecuadas para el control de motores y es difícil la realización de circuitos de control simétricos. Por otra parte, el SCR puede conducir en todo el periodo si se rectifica la señal de red. Las figuras 12.28.a y 12.28.b muestran dos ejemplos sencillos de control realizados a través de SCR de un motor universal (fig. 12.28.a) y un motor de imán-permanente (fig. 12.28.b).

12.8.4.- Cargador de baterías basado en un UJT

El cargador de baterías mostrado en la figura 12.29 es un circuito muy simple que utiliza un oscilador de relajación basado en un UJT para el control del SRC. El circuito no opera cuando la batería esté completamente cargada o la polaridad de conexión de la batería no es la correcta.

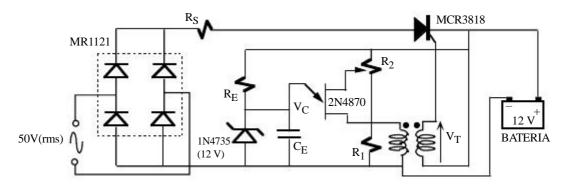


Figura 12.29. Cargador de baterías usando un UJT.

El funcionamiento del circuito reflejado en las formas de onda de la figura 12.30 es el siguiente. El oscilador de relajación únicamente está activo cuando la tensión de la batería es baja. En este caso, el UJT dispara al SRC con una frecuencia variable en función de las necesidades de corriente de carga. La tensión V_P de activación del UJT es variable al ser $V_P = V_{B2B1} + V_F$, en donde V_{B2B1} depende a su vez de la tensión de la batería regulada a través del potenciómetro variable R_2 . El oscilador de relajación dejará de funcionar cuando la V_P sea mayor que la tensión zener del diodo de referencia 1N4735. En este caso, la tensión del condensador C_E será constante al valor fijado por la tensión zener.

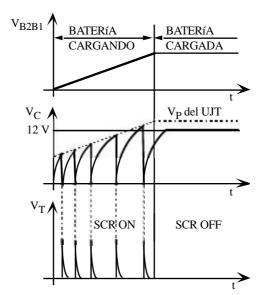


Figura 12.30. Formas de onda del cargador de batería de la figura 12.29.

12.8.5.- Control de calor con sensor de temperatura

El circuito de control de calor mostrado en la figura 12.31 ha sido concebido para controlar la temperatura de una habitación, bien utilizando una fuente de calor (por ejemplo, una resistencia eléctrica o un horno) o bien utilizando un ventilador (o cualquier dispositivo refrigerador). El circuito de disparo se realiza a través de un UJT que introduce un ángulo de conducción de los TRIACs que va a depender de la temperatura de la habitación medida a través de una resistencia térmica (termistor) R_T cuyo valor es de 2k a 25°C; el rectificador de puente de diodos y el diodo zener 1N5250A alimentan a este circuito de disparo. R_2 se ajusta para que el transistor bipolar 2N3905 esté en corte a una temperatura dada. Cuando el 2N3905 está en corte ninguna corriente carga el condensador C y, por consiguiente, el UJT y los TRIACs están cortados. Si el 2N3905 está a ON, éste carga el condensador C y dispara el UJT cuando alcanza la tensión V_p . El tiempo que tarda en alcanzar la tensión V_p del UJT depende de R_T . Un incremento en la temperatura diminuye el valor de R_T , y por consiguiente, disminuye el valor de corriente de colector del transistor aumentando a su vez el tiempo de carga del condensador (disminuye el ángulo de conducción). Por el contrario, al disminuir temperatura aumenta el ángulo de conducción. El modo de operar con la temperatura se invierte si se intercambia R_T con R_2 .

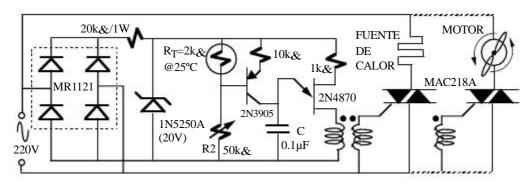


Figura 12.31. Circuito de control de calor.

Problemas

- P12.1 El MBS4991 es un SBS que según las características eléctricas proporcionadas por el fabricante tiene una I_H=0.7mA, V_H(o V_F)=1.4V y V_{BO} (o V_S)=8 V. En las figuras P12.1.a, P12.1.b y P12.1.c se presentan tres osciladores de relajación basados en este dispositivo. Para estos circuitos, se pide:
 - Determinar la frecuencia de oscilación y representar gráficamente V_o.
 - b) Calcular el rango de valores de R que impida la oscilación.

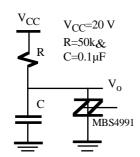
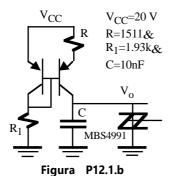



Figura P12.1.a

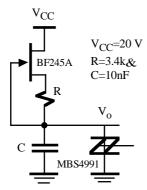
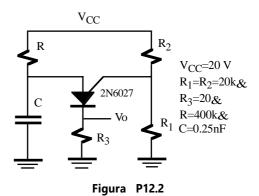
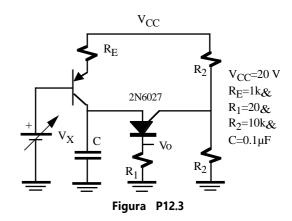
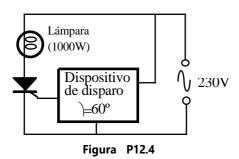




Figura P12.1.c

P12.2 Calcular la frecuencia de oscilación del oscilador de relajación basado en el PUT
 2N6027 de la figura P12.2.



P12.3 La figura P12.3 muestra un oscilador de relajación cuya frecuencia es dependiente de la tensión variable V_X. Representar gráficamente la frecuencia en función de V_X. ¿Cuál es la mayor frecuencia de oscilación y el valor de V_X para que oscile el circuito a 1kHz?.

p12.4 El control de potencia de una lámpara incandescente de 1000W se realiza a través de un SCR, tal como se indica en la figura 12.4. El circuito de disparo ha sido diseñado generar un señal de disparo con un ángulo de desfase de 60° tanto en los semiperiodos positivos como negativos. Calcular la potencia eficaz entregada a la bombilla y el porcentaje de potencia que

está recibiendo respecto al máximo. Repetir el problema sustituyendo el SCR por un TRIAC.

P12.5 Determinar R para que el ángulo de disparo del circuito de la figura P12.5 sea de 60°.

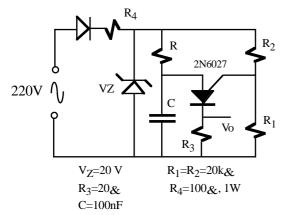
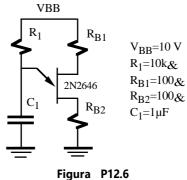



Figura P12.5

P12.6 Calcular la frecuencia de oscilación del oscilador de relajación de la figura P12.6 basado en el UJT 2N2646.

rigura Fiz.

- P12.7 La figura P12.7 muestra la estructura de un regulador de luz de 1000W basado en el UJT 2N2646 y que utiliza el TRIAC MAC218A como elemento de control de potencia. Determinar el ángulo de desfase y la potencia entregada a la carga para el caso de que R₁=79.75k&.
- **P12.8** El regulador de luz de la figura P12.8.a está controlado por la señal digital A. Representar gráficamente, V_1 , V_2 e I_L si la tensión de línea y A toman el valor indicado en las gráficas de la figura P12.8.b.

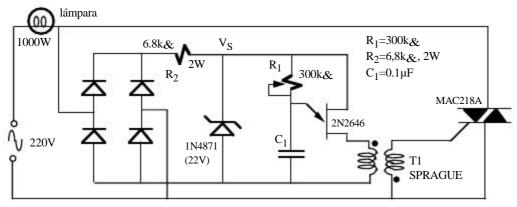


Figura P12.7

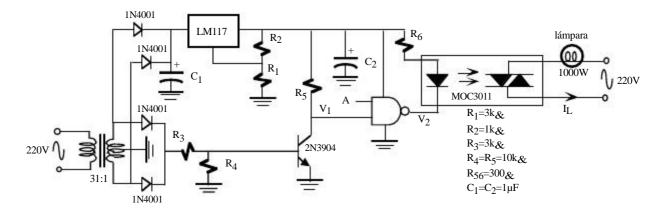


Figura P12.8.a

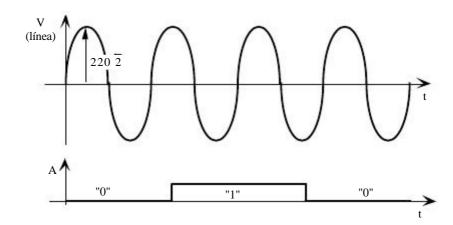
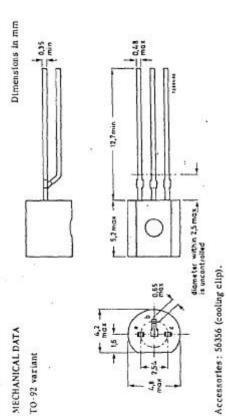


Figura P12.8.b

Bibliografía

- **Boylestad, R., Nashelsky, L.,** Electronic Devices and Circuit Theory, Prentice Hall International Editions, 1996.
- Burns, S.G., Bond, P.R., *Principles of Electronic Circuits*, PWS Publising Company, 1997.
- **Dailey, D.J.**, Operational Amplifiers and Linear Integrated Circuits: Theory and Applications, McGraw Hill, 1989.
- Franco, S., Design with Operational Amplifiers and Analog Integrated Circuits. McGraw Hill, 1988.
- **Gray, P.E., Meyer, R.G.**, *Analysis and Design of Analog Integrated Circuits*, Wiley, 1977.
- **Gray, P.E., Searle C.L.,** *Principios de Electrónica*, Reverté, 1973.
- **Gregorian, R., Temes, G.C.**, *Analog MOS Integrated Circuits for Signal Processing*, Wiley, 1986.
- Hamilton, D.J., Howard, W.G., Basic Integrated Circuit Engineering, McGraw Hill, 1975.
- Hambley, A.R., *Electrónica*, Prentice Hall, 2001.
- Horenstein, M.N., Microelectronic Circuits and Devices, Prentice Hall International, 1996.
- Allen, P.E., Holberg, D.R., CMOS Analog Circuit Design, McGraw Hill, 1989.
- Mallik, N.R., Circuitos Electrónicos. Análisis, Simulación y Diseño, Prentice-Hall, 2000.
- **Malvino, A.P.**, *Pincipios de Electrónica*, McGraw-Hill, 2000.
- Millman, J., Microelectrónica, Hispano-Europea, 1981.
- Millman, J., Halkias, Ch., Electrónica Integrada, Hispano-Europea, 1976.
- Shilling, D.L., Belove C., Circuitos Electrónicos Discretos e Integrados, Reverte, 1985.
- **Stanley, W.D.**, *Electronic Devices: Circuits and Applications*, Prentice-Hall, 1989.
- Tietze U., Schenk Ch., Circuitos Electrónicos Avanzados, Marcombo, 1983.
- Savant, C.J., Roden, M.S. y Carpenter, G.L., *Diseño Electrónico: Circuitos y Sistemas*, Addison-Weley Iberoamericana, S.A., 1992.
- Sedra, A.S., Smith K.C., Microelectronic Circuits, Oxford University Press, 1998.
- Manuales de fabricantes de Motorola, Texas Instruments, Siliconix, Signetics, Analog Devices, National Semiconductor, Avanced Semiconductor, FairChild Semiconductor Corp., Exar integrated Systems, Precision Monolitics, Linear Technology, Burr-Brown.

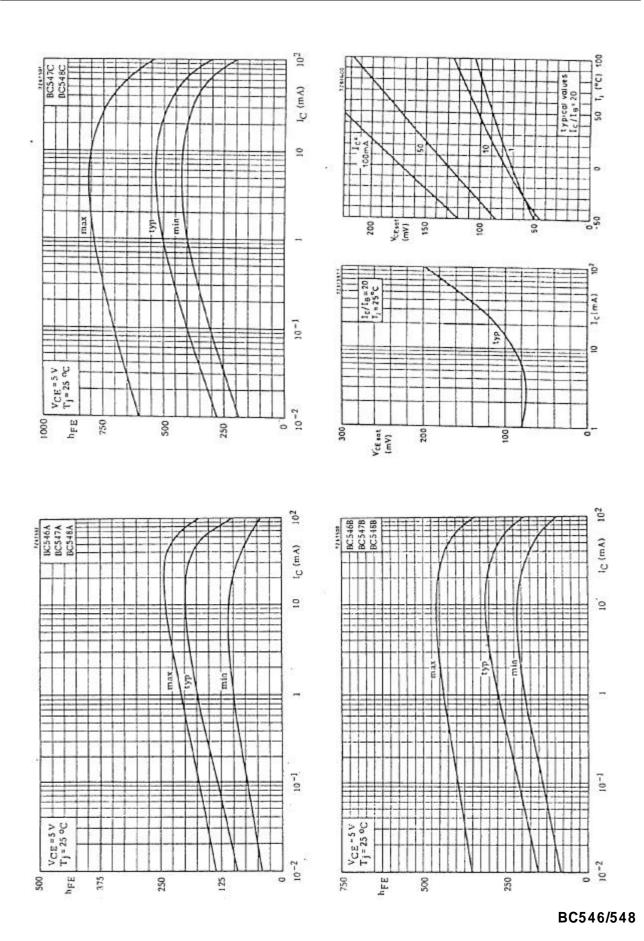
<u>Apéndice</u>

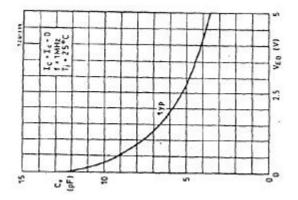

Hojas de	características de comp	onentes
•	Transistor de pequeña señal NPN BC546/548	A.1
•	Transistor de pequeña señal NPN 2N3903/04	A.6
•	Transistor de pequeña señal PNP 2N3905/06	A.12
•	JFET de canal N 2N5457	A.17
	JFET de canal P 2N5460/62	A.20
	Amplificador operacional OA741 Regulador de tensión ajustable positivo	A.23
	LW117/317 Regulador de tensión ajustable negativo	A.29
	LM137/337 SIDAC	A.33
	MKP3V129/240 SBS	A.36
	MBS4991/2/3 SCR	A.38
	2N5060 PUT	A.40
	2N6027/28 UJT 2N2646	A.42
	TRIAC MAC218A	A.44 A.45

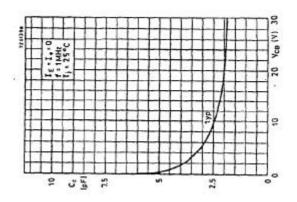
Electronica Básica para Ingenieros		

SILICON PLANAR EPITAXIAL TRANSISTORS

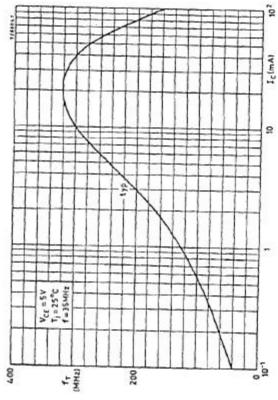
General purpose n-p-n translators in a plastic TO-92 variant, especially suitable for use in driver stages of audio ampliflers.


QUICK REFERENCE DATA	EFEREN	CE DAT.	-		10000	*
			BC546	BC547	BC548	
Collector-emitter voltage (VBE = 0)	VCES	max.	80	S	30	>
Collector-emitter voltage (open base)	VCEO	тах,	65	45	30	>
Collector current (peak value)	CM	max.	200	200	200	F
Total power dissipation up to Tamb = 25 °C	Ptot	тах.	200	200	2005	WIE
Junction temperature	Ę	max.	150	150	150	oc
Smell-signal current gala IC = 2 mA: VCE = 5 V: f = 1 kHz	h	_ A _ V	125 500	125	125	
Transition frequency I _C = 10 mA; V _{CE} = 5 V	Ţ	ιλb.	300	300	300	MHz
Noise figure at R _S = 2 kΩ I _C = 200 μA; V _{CE} = 5 V f = 1 kHz; B = 200 Hz	ţL,	typ.	24	2	73	g.

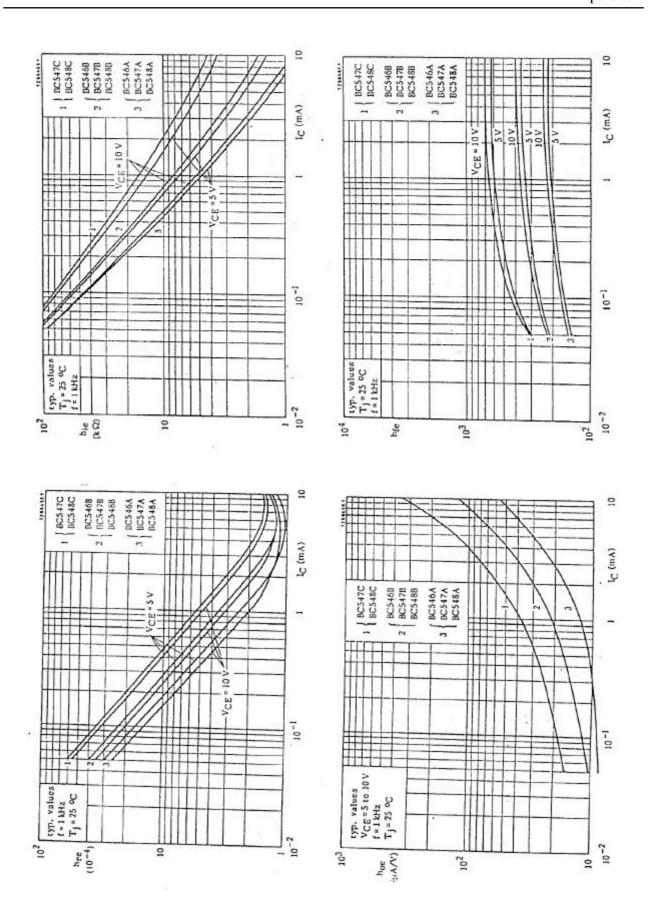

BC546/548


CHARACTERISTICS	55	$T_j = 25 ^{6}$ C unless otherwise specified	opo ssa	rwise	pecified							
(wheeter cut-off current $I_E = 0$; $V_{CB} = 30 \text{ V}$ $I_E = 0$; $V_{CB} = 30 \text{ V}$; $T_J = 150 ^9\text{C}$		1CBO	v v'	2 4	٧ų							
lose-emitter voltage 1) IC = 2 mA; V _{CE} = 5 V		VBE	typ.	yp. 660 580 to 700	A B V							
IC = 10 mA: V _{CE} = 5 V		VBE	٧	077	νm							
Saturation voltage 2)	7	V	. dk	8	Ą.	CHARACTERISTICS (continued)		T, = 25	T _j = 25 °C unless otherwise specifier	ss otherv	rise spe	citier
A CONTRACT OF	-	Ver	v §	250) H			e e e	BCS46 BCS47	8C547	BC548	
. 100 max 1. a 5 mA		'BESST	ġ ġ	200	, E	Small signal current grin at f = 1 kHz 1C = 2 mA; V_C i; = 5 V	hfc	۸ ۸	125	125	125	
		Vac	Ś	906	, w	Noise figure at R _S = 2 kΩ		,				
Knee voltage	•.	BESUL		ŧ.		$I_C = 200 \text{ pA}; V_{CH} = 5 \text{ V}$ $I_C = 1 \text{ kHz}; B = 200 \text{ Hz}$	<u>n-</u>	dk v	2 0	7	7 P P	9 %
$I_C = 10 \text{ mA}$: $I_B = \text{value for which}$ $I_C = 11 \text{ mA} \text{ at }^V_{CE} = 1 \text{ V}$		VCEK	Ė,	300	VE VE		- 8		-	BC5468 BC5478 BC5488	BC547C	131
(mA)	1.0	1				D. C. current gain			8	951	270	.1
91						IC = 10 pA: VCE * 5 V	PFE	.vb.	ķ	101	2	
			32	S23		IC " 2 mA: VCE = 5 V		v gg v	110	200 290 450	420 520 800	
Verx		VCE (V)				h parameters at f = 1 kHz (common emitter) I _C = 2 mA: V _{CE} = 5 V	tter)					
Collector capacitance at $f=1$ MHz $I_E=I_e=0$; $V_{CB}=10$ V		ູບັ	Ėv	2.5		lnput impedance	h _{ic}	λĖν	2.7	ဗေသ ကို ကို ဆို	8,7 k	G G G
Emitter capacitance at f = 1 MHz						Reverse voltage transfer ratio	hre	typ.	1.5	7	 E	10-4
IC = Ic = 0; VEB = 0.5 V		ů	typ.	6	ĮĘ.	Small stenal current gain	e H	, É	125 220	330	450	
Transition frequency at f = 35 MHz					:	9	ż	v	260	200	006	
IC = 10 mA; VCE = 5 V I) Van decreases by about 2 mV/9C with increasing termograture.	Increasing	f _T	É		300 MHz	Output admittance	h og	Ġ,	30	90	99	× × ×
2) VBEsst decreases by about 1,7 mV/oC with increasing temperature.	with incr	casing temper	arure.				1	v	3	3		

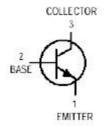

BC546/548



A.3



BC546/548



BC546/548

General Purpose TransistorsNPN Silicon

*Motoroia Preferred Device

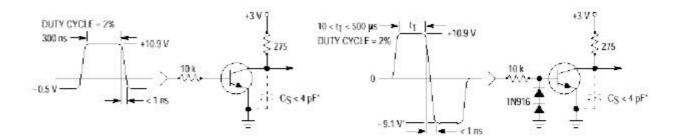
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector - Base Voltage	Vcво	60	Vdc
Emitter-Base Voltage	VEBO	6.0	Vdc
Collector Current Continuous	lo	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS(1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	Reya	200	°C/W
Thermal Resistance, Junction to Case	Rejc	83.3	°C/W

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				ė.
Collector – Emitter Breakdown Voltage (2) (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	_	Vdc
Collector – Base Breakdown Voltage (IC = 10 µAdc, IE = 0)	V(BR)CBO	60	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V(BR)EBO	6.0		Vdc
Base Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc)	İBL	S	50	nAdo
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	CEX	-	50	nAdd

- 1. Indicates Data in addition to JEDEC Requirements.
- 2. Pulse Test: Pulse Width ≤ 300 µs; Duty Cycle ≤ 2.0%.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}\text{C}$ unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Max	Unit
ON CHARACTE	RISTICS					
DC Current Gain(1 (IC = 0.1 mAdc.		2N3903 2N3904	pEE	20 40	=	bise
(I _C = 1.0 mAdc,	V _{CE} = 1.0 Vdc)	2N3903 2N3904		35 70	=	
(IC = 10 mAdo, 1	V _{CE} = 1.0 Vds)	2N3903 2N3904		50 100	150 300	
(IC = 50 mAdc, 1	V _{CE} = 1.0 Vdc)	2N3903 2N3904		30 60	_	
(IC = 100 mAdc,	V _{CE} ≈ 1.0 Vdc)	2N3903 2N3904		15 30	_	
Collector-Emitter (I _C = 10 mAdc, I (I _C = 50 mAdc, I			VCE(sat)	_	0.2 0.3	Vdc
Base-Emitter Sat (I _C = 10 mAdc, I (I _C = 50 mAdc, I	B = 1.0 mAdc)		VBE(sat)	0.65	0.85 0.95	Vdc
MALL-ŞIGNAL	CHARACTERISTICS		5.00			
(IC = 10 mAdo, \	Bandwidth Product VCE = 20 Vdc, f = 100 MHz)	2N3903 2N3904	fΤ	250 300	=	MHz
Output Capacitano (VCB = 5.0 Vdc,	te I _E = 0, f = 1.0 MHz)		Cobo		4.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc,	I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
input impedance (I _C = 1.0 mAdc.	V _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback (I _C = 1.0 mAdc.	Ratio V _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small-Signal Curr (IC = 1.0 mAdc.	ent Gain VCE = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	1 27 mm
Output Admittance (IC = 1.0 mAdc,	VCE = 10 Vdc, f = 1.0 kHz)		hoe	1.0	40	μmhos
Noise Figure (IC = 100 µAdc.	V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF	Ξ	6.0 5.0	dB
SWITCHING CHA	ARACTERISTICS		300		10	
Delay Time	(VCC = 3.0 Vdc, VBE = 0.5 Vdc,		ta		35	ns
Rise Time	IC = 10 mAdc, IB1 = 1.0 mAdc)	19000000	t _r	277	35	ns
Storage Time	(VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = IB2 = 1.0 mAdc)	2N3903 2N3904	ts	_	175 200	ns
Fall Time	1		tr		50	ns

^{1.} Pulse Test: Pulse Width ≤ 300 µs; Duty Cycle ≤ 2.0%.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time **Equivalent Test Circuit**

Figure 2. Storage and Fall Time **Equivalent Test Circuit**

TYPICAL TRANSIENT CHARACTERISTICS

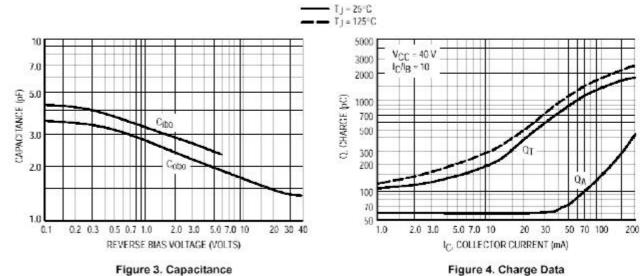
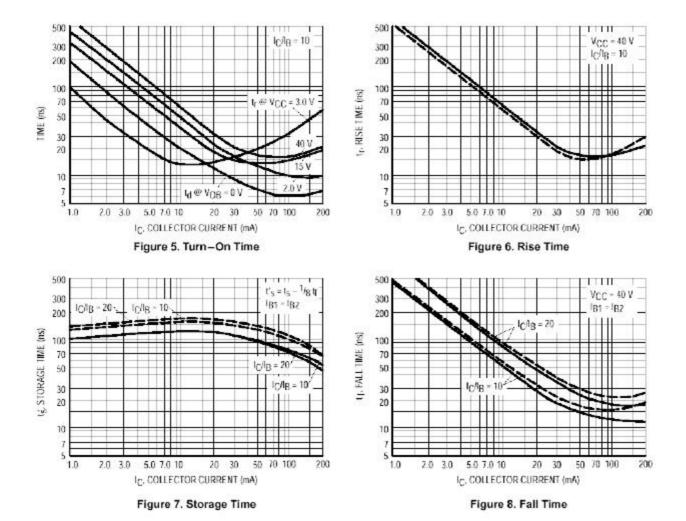
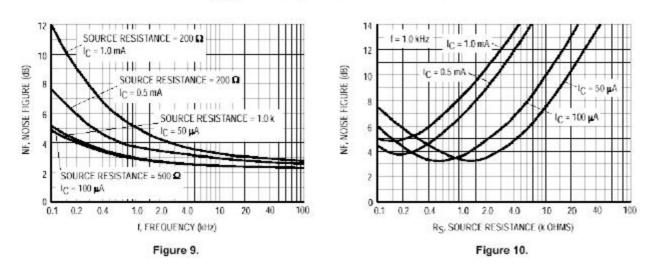
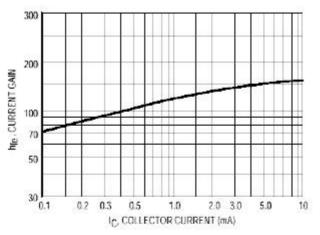




Figure 4. Charge Data


TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

(VCE = 5.0 Vdc, T_A = 25°C, Bandwidth = 1.0 Hz)

h PARAMETERS

(VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C)

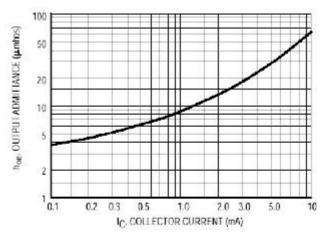
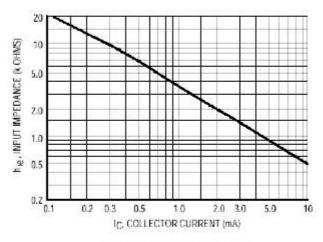



Figure 11. Current Gain

Figure 12. Output Admittance

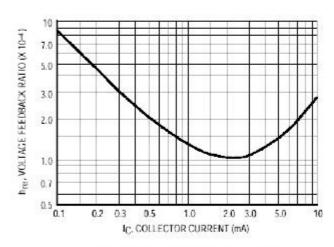


Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

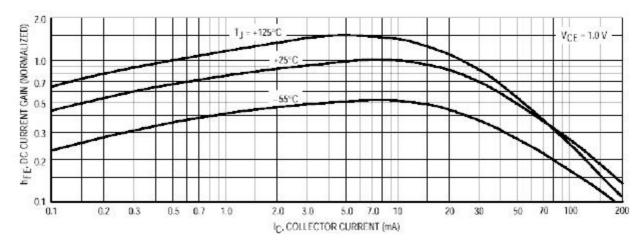


Figure 15. DC Current Gain

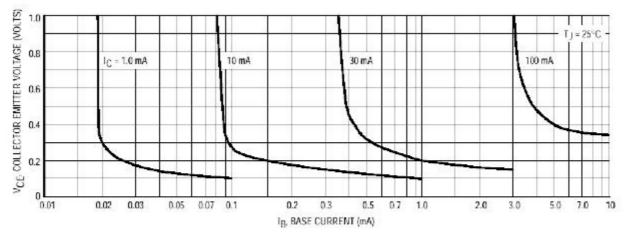
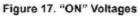



Figure 16. Collector Saturation Region

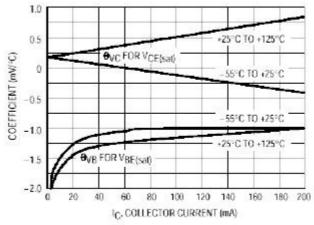
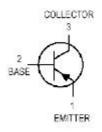



Figure 18. Temperature Coefficients

General Purpose Transistors PNP Silicon

MAXIMUM RATINGS

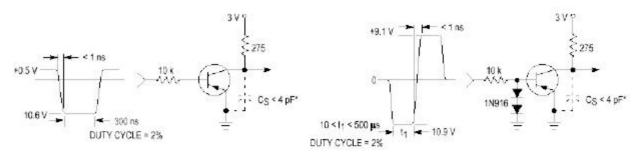
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Callector Current — Continuous	lc	200	mAdd
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW/°C
Total Power Dissipation @ T _A = 60°C	PD	250	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PO	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ. Tstg	-55 to +150	°C

THERMAL CHARACTERISTICS(1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	Reja	200	"C/W
Thermal Resistance, Junction to Case	Rejo	83.3	°C/W

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

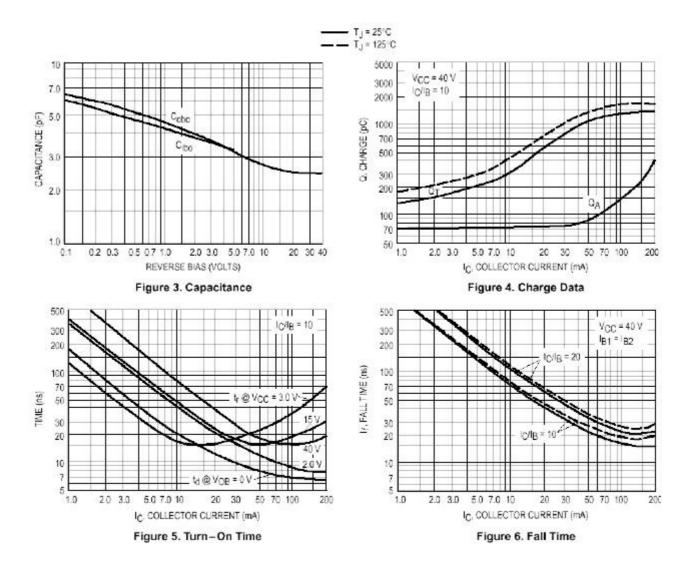
Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	in vi		50 5	ž.
Collector-Emitter Breakdown Voltage (2) (IC = 1.0 mAdc, IB = 0)	V(BR)CEO	40	- 100	Vdc
Collector-Base Breakdown Voltage (IC = 10 µAdc, IE = 0)	V(BR)CBO	40	(T)	Vdc
Emitter – Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	V(BR)EBO	5.0	-	Vdc
Base Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc)	lBL	-	50	nAdo
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	CEX	570	50	nAdo


- 1. Indicates Data in addition to JEDEC Requirements.
- 2. Pulse Test: Pulse Width ≤ 300 µs: Duty Cycle ≤ 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

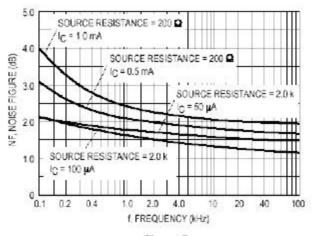
	Characteristic		Symbol	Min	Max	Unit
ON CHARACTERIS	TICS(1)		W 15			
DC Current Gain (I _C = 0.1 mAdc, V _{CE}	E = 1.0 Vdc)	2N3905 2N3906	pEE	30 60	_	=
(I _C = 1.0 mAdc, V _{CE}	E = 1.0 Vdc)	2N3905 2N3906		4 0 80	Ξ	
(IC = 10 mAdc, VCE	= 1.0 Vdc)	2N3905 2N3906		50 100	150 300	
(IC = 50 mAde, VCE	= 1.0 Vdc)	2N3905 2N3906		30 60	_	
(I _C = 100 mAdo, V _C	E = 1.0 Vdc)	2N3905 2N3906		15 30	=	
Collector-Emitter Sati (I _C = 10 mAdc, I _B = (I _C = 50 mAdc, I _B =	1.0 mAdc)		VCE(sat)	-	0.25 0.4	Vdc
Base – Emitter Saturati (I _C = 10 mAdc, I _B = (I _C = 50 mAdc, I _B =	1.0 mAdc)		VBE(sat)	0.65	0.85 0.95	Vdc
MALL-SIGNAL CH	HARACTERISTICS					
Current-Gain — Band (IC = 10 mAdc, VCE	dwidth Product = 20 Vdc, f = 100 MHz)	2N3905 2N3906	fŢ	200 250		MHz
Output Capacitance (VCB = 5.0 Vdc, IE:	= 0, f = 1.0 MHz)		Cobo		4.5	pF
Input Capacitance (VEB = 0.5 Vdc, IC	= 0, f = 1.0 MHz)		C _{ibo}	1	10.0	pF
Input Impedance (IC = 1.0 mAdc, V _{CE}	E = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	h _{ie}	0.5 2.0	8.0 12	kΩ
Voltage Feedback Rat (IC = 1.0 mAdc, VC)	io E = 10 Vdc, f = 1.0 kHz)	2N3905 2N3908	μ ^{LB}	0.1 0.1	5.0 10	X 10 ⁻⁴
Small–Signal Current ((I _C = 1.0 mAdc, V _C)	Gain E = 10 Vdc, f = 1.0 kHz)	2N3905 2N3906	hfe	50 100	200 400	-
Output Admittance (IC = 1.0 mAde, VCI	<u>E</u> = 10 Vdc, f = 1.0 kHz}	2N3905 2N3906	hae	1.0 3.0	40 60	µmhos
Noise Figure (IC = 100 µAdc, VCE	E = 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	2N3905 2N3906	NF		5.0 4.0	dB
SWITCHING CHARA	ACTERISTICS		75 110		·	Call .
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc.		10		35	ns
Rise Time	IC = 10 mAdc, IB1 = 1.0 mAdc)		tr	-	35	ns
Storage Time	(VCC = 3.0 Vdc, IC = 10 mAdc.	2N3905 2N3906	t _S	_	200 225	ns
Fall Time	I _{B1} = I _{B2} = 1.0 mAd	2N3905 2N3906	t _f	1	60 75	ns

^{1.} Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.



* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit


Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

(VCE = -5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz)

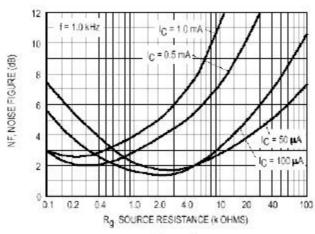
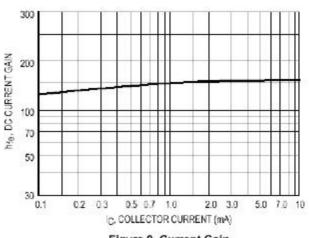



Figure 7.

Figure 8.

h PARAMETERS

(VCE = -10 Vdc, f = 1.0 kHz, TA = 25°C)

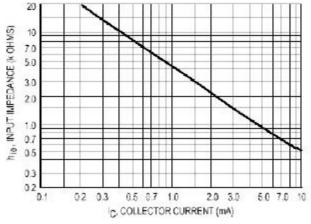



Figure 9. Current Gain

Figure 10. Output Admittance

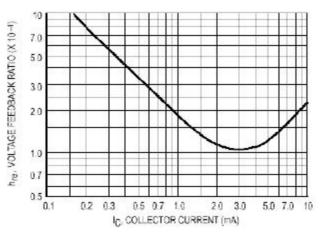


Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

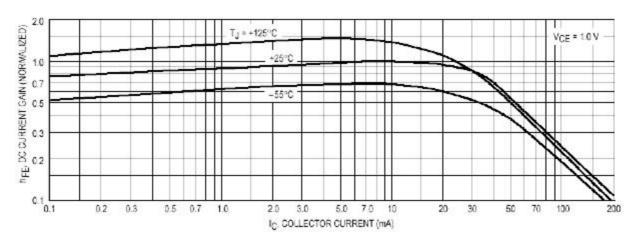


Figure 13. DC Current Gain

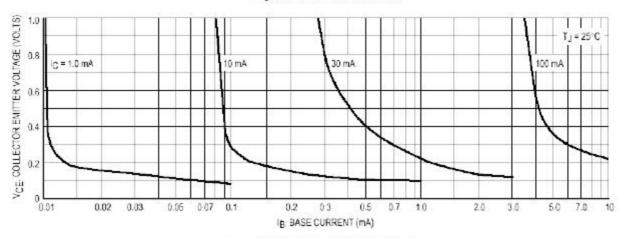


Figure 14. Collector Saturation Region

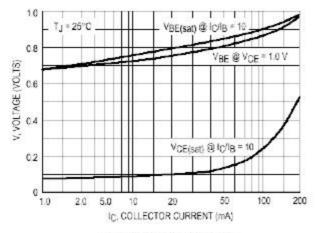


Figure 15. "ON" Voltages

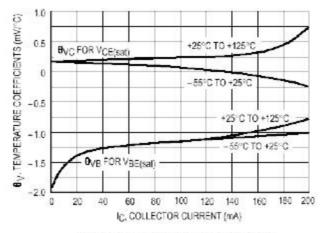
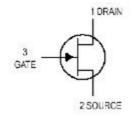



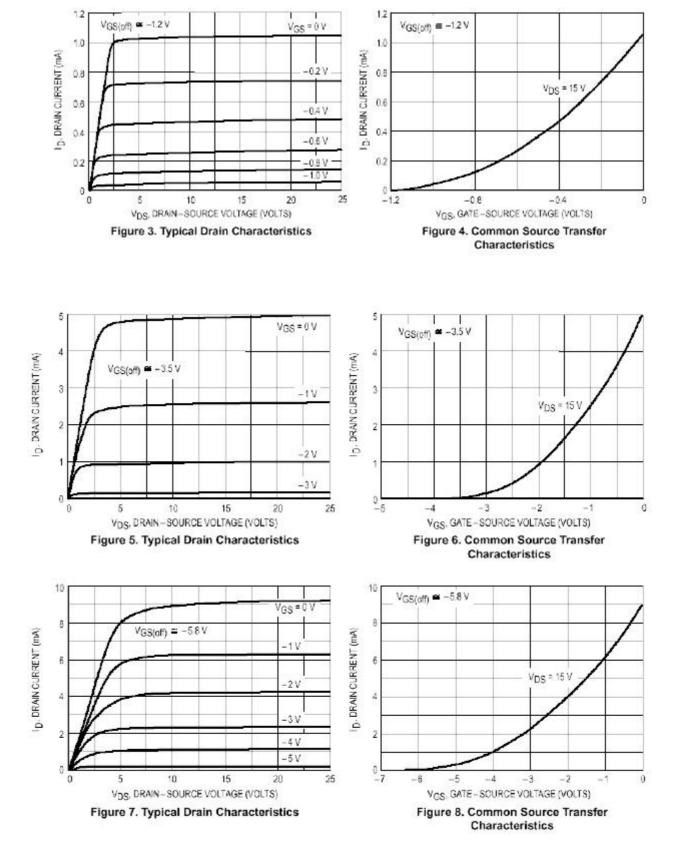
Figure 16. Temperature Coefficients

JFETs — General Purpose

N-Channel - Depletion

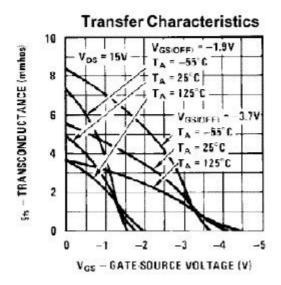
MAXIMUM RATINGS

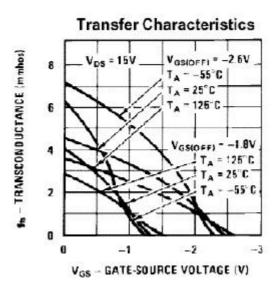
Rating	Symbol	Value	Unit	
Drain-Source Voltage	VDS	25	Vdc	
Drain-Gate Voltage	VDG	25	Vdc	
Reverse Gate - Source Voltage	VGSR	-25	Vdc	
Gate Current	lg.	10	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW/°C	
Junction Temperature Range	Tj	125	=C	
Storage Channel Temperature Range	Tstg	-65 to +150 °C		

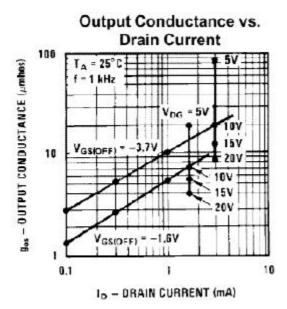


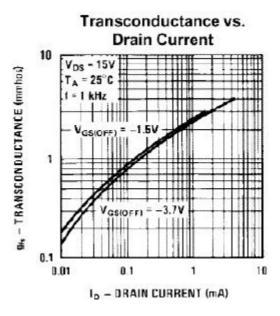
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Gate-Source Breakdown Voltage (IG = -10 μAdc, VDS = 0)	V(BR)GSS	-25	_		Vdc
Gate Reverse Current (V _{GS} = -15 Vdc, V _{DS} = 0) (V _{GS} = -15 Vdc, V _{DS} = 0, T _A = 100°C)	lass	=	_	-1.0 -200	nAdc
Gate-Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 10 nAdc)	VGS(off)	-0.5	-	-6.0	Vdc
Gate-Source Voltage (V _{DS} = 15 Vdc, I _D = 100 µAdc)	V _{GS}	-	-2.5		Vdc
ON CHARACTERISTICS	32.			On the state of th	
Zero – Gate – Voltage Drain Current (1) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	loss	1.0	3.0	5.0	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance Common Source (1) (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 kHz)	ly _{fs} l	1000	_	5000	µmhos
Output Admittance Common Source (1) (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	ly _{os} l	25—25	10	50	µmhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0, f = 1.0 MHz)	Ciss	-	4.5	7.0	pF
Reverse Transfer Capacitance (VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)	Crss	85 <u>11</u> 89	1.5	3.0	pF

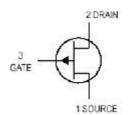

^{1.} Pulse Test; Pulse Width ≤ 630 ms, Duty Cycle ≤ 10%.


2N5457




2N5457

Typical Characteristics (continued)



JFET Amplifiers P-Channel — Depletion

2N5460 thru 2N5462

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Drain-Gate Voltage	VDG	40		
Reverse Gate Source Voltage	VGSR	40	Vdc	
Forward Gate Current	lG(f)	10	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C	
Junction Temperature Range	Tj	-65 to +135	°C	
Storage Channel Temperature Range	Tstg	-65 to +150 °C		

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteris	tic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Gate-Source Breakdown Voltage (I _G = 10 μAdc, V _{DS} = 0)	2N5460, 2N5461, 2N5462	V _(BR) GSS	40) 110	+	Vdc
Gate Reverse Current (VGS = 20 Vdc, VDS = 0) (VGS = 30 Vdc, VDS = 0)	2N5460, 2N5461, 2N5462	IGSS	<u>=</u>	-	5.0	nAdc
(VGS = 20 Vdc, VDS = 0, TA = 100°C) (VGS = 30 Vdc, VDS = 0, TA = 100°C)	2N5460, 2N5461, 2N5462		(E)	137	1.0	μAdc
Gate-Source Cutoff Voltage (V _{DS} = 15 Vdc, I _D = 1.0 μAdc)	2N5460 2N5461 2N5462	VGS(off)	0.75 1.0 1.8	=	6.0 7.5 9.0	Vdc
Gate-Source Voltage (V _{DS} = 15 Vdc, I _D = 0.1 mAdc) (V _{DS} = 15 Vdc, I _D = 0.2 mAdc) (V _{DS} = 15 Vdc, I _D = 0.4 mAdc)	2N5460 2N5461 2N5462	VGS	0.5 0.8 1.5	=	4.0 4.5 6.0	Vdc
ON CHARACTERISTICS		70340 PV	:	30X	10-	100
Zero – Gate – Voltage Drain Current (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	2N5460 2N5461 2N5462	IDSS	-1.0 -2.0 -4.0	_	-5.0 -9.0 -16	mAdc
SMALL-SIGNAL CHARACTERISTICS	S		11.0011		1000	-
Forward Transfer Admittance (VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)	2N5480 2N5461 2N5462	lyfs	1000 1500 2000	=	4000 5000 6000	umhos
Output Admittance (VDS = 15 Vdc, VGS =	0, f = 1.0 kHz)	lyosl			75	µ mhos
Input Capacitance (V _{DS} = 15 Vdc, V _{GS} = 0	0, f = 1.0 MHz)	Ciss	770	5.0	7.0	pF
Reverse Transfer Capacitance (Vps = 15 Vdc, Vgs = 0, f = 1.0 MHz)		Crss		1.0	2.0	pF
UNCTIONAL CHARACTERISTICS	300					
Noise Figure (VDS = 15 Vdc, VGS = 0, RG = 1.0 Mego	ohm, f = 100 Hz, BW = 1.0 Hz)	NF	570	1.0	2.5	dB
Equivalent Short-Circuit Input Noise Voltage (Vps = 15 Vdc, Vgs = 0, f = 100 Hz, BW = 1.0 Hz)		e _n	nan-	60	115	nV/√Hz

2N5460/62

Figure 1. VGS(off) = 2.0 Volts

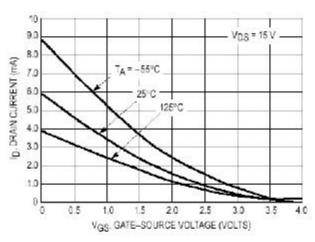


Figure 2. VGS(off) = 4.0 Volts

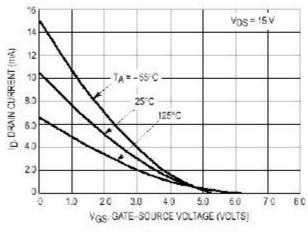


Figure 3. VGS(off) = 5.0 Volts

FORWARD TRANSFER ADMITTANCE versus DRAIN CURRENT

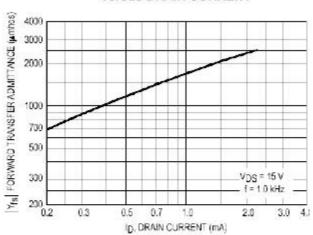


Figure 4. VGS(off) = 2.0 Volts

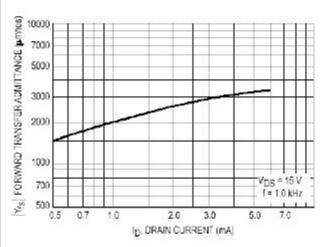


Figure 5. VGS(off) = 4.0 Volts

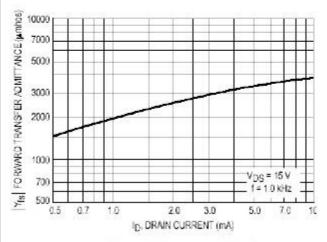
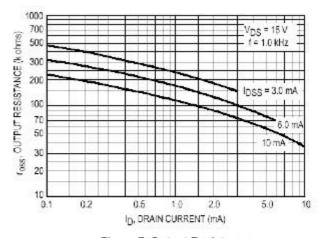
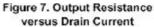




Figure 6. VGS(off) = 5.0 Volts

2N5460/62

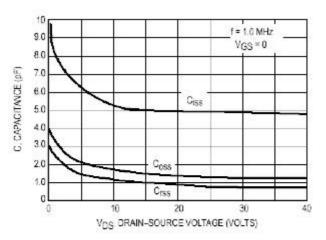


Figure 8. Capacitance versus Drain-Source Voltage

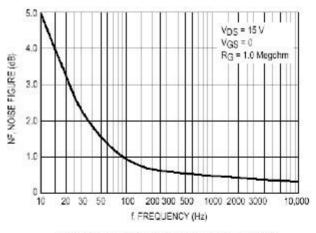


Figure 9. Noise Figure versus Frequency

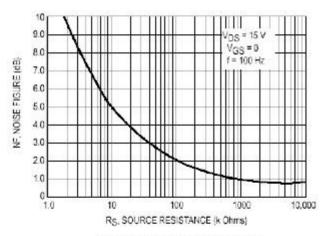
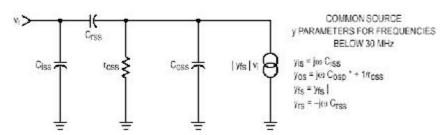



Figure 10. Noise Figure versus Source Resistance

*Cosp is Coss in parallel with Series Combination of Ciss and Crss

2N5460/62

General purpose operational amplifier

A741/- A741C/SA741C

DESCRIPTION

The • A741 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The • A741 is short-circuit-protected and allows for nulling of offset voltage.

FEATURES

- Internal frequency compensation
- · Short circuit protection
- . Excellent temperature stability
- High input voltage range

PIN CONFIGURATION

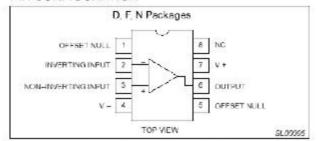


Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
8-Pin Plastic Dual In-Line Package (DIP)	-55-C to +125-C	• A741N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70-C	+A741CN	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	-40+C to +85+C	SA741CN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55•C to +125•C	• A741F	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70•C	• A741CF	0580A
8-Pin Small Outline (SO) Package	0 to +70+C	· A741CD	SOT96-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V ₃	Supply voltage		
	• A741C	-18	V
	+A741	•22	V
PD	Internal power dissipation	2000	
	D package	780	mW
	N package	1170	mW
	F package	600	mW
V _{IN}	Differential input voltage	•30	V
VIN	Input voltage ¹	+15	V
Isc	Output short-circuit duration	Continuous	
TA	Operating temperature range		
	- A741C	0 to +70	-C
	SA741C	-40 to +85	-C
	+A741	-55 to +125	•C
T _{STG}	Storage temperature range	-65 to +150	•c
T _{SOLD}	Lead soldering temperature (10sec max)	300	•c

NOTES

OA741

^{1.} For supply voltages less than • 15V, the absolute maximum input voltage is equal to the supply voltage.

General purpose operational amplifier

• A741/• A741C/SA741C

DC ELECTRICAL CHARACTERISTICS

 $T_A = 25 \cdot C$, $V_8 = \cdot 15 V$, unless otherwise specified

SYMBOL	PARAMETER	TEST CONDITIONS	• A741		• A741C			UNIT	
SYMBOL			Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage	R _s ≋10k•		10	5.0		2.0	6.0	mV
		Rs=10k+ , over temp		1.0	6.0	l		7.5	mV.
· Vos/• T		TOTAL CONTROL	:	10	- V		10		• W-C
os	Offset current			20	200		20	200	nA
	The state of the s	Over temp.		5,164	NO.	l	10000	300	nA
		TA=+125+C		7.0	200	l		(5-57-04)	пА
		T _A =-55•C		20	500	l		ΙI	nA
· losi• T		9248		200			200		pA/+C
BIAS	Input bias current			80	500		80	500	nΑ
	13	Over temp.				l		800	nA
		T _A =+125•C		30	500	l		ΙI	nA
		T _A =-55•C		300	1500	l		ΙI	nA
• (_B /• T				1		l	1	ΙI	nA/∙C
_		R _L =10k+	-12	-14	1	• 12	•14		V
Vout	Output voltage swing							ΙI	
		R_=2k+ , over temp.	-10	•13		• 10	•13	ΙI	V
	0	R _L =2k+ , V _O =+10V	50	200		20	200		V/mV
AvoL	Large-signal voltage gain	R _L =2k• , V _O =• 10V,						ΙI	
	25	over temp.	25		l e	15			V/mV
	Offset voltage adjustment range			•30			• 30		mV
		Rs•10k•					10	150	· V/V
PSRR	Supply voltage rejection ratio	MARCO AND GALA				l	194	2000	
		Rs+10k+, over temp.		10	150				• V/V
127		14.00				70	90	П	dB
¢MRR	Common-mode rejection ratio	2000 IN	20022002			l		ΙI	
	- 33	Over temp.	70	90					dB
0	0.00	30,000,000		1.4	2.8		1.4	2.8	mA
loc	Supply current	TA##125-C		15	2.5			l l	mA
		T _A =-55+C		2.0	3.3	l		ΙI	mA
V₁N	Input voltage range	(* A741, over temp.)	•12	•13	1	• 12	•13		ν
R _{IN}	Input resistance		0.3	2.0		0.3	2.0	ı I	M•
	10		-	50	85		50	85	mW
PD	Power consumption	T _A =+125•C		45	75				mW
100 m	The state of the property of the Colorest Colore	T _A =-55-C		45	100				mW
Rout	Output resistance		4.6	75			75		
Isc	Output short-circuit current		10	25	60	10	25	60	mA

General purpose operational amplifier

• A741/• A741C/SA741C

DC ELECTRICAL CHARACTERISTICS

TA = 25+C, Vs = +15V, unless otherwise specified.

0/4/00/	PARAMETER	TEST COMPLETIONS	1	LIBET		
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNIT
Vos	A T	R _S =10k+		2.0	6.0	mν
	Offset voltage	R _S =10k*, over temp.			7.5	mV
• V _{OS} /• T	20 1	20 - 100 m		10		• V/•C
los	# 4)	8	3	20	200	пА
	Offset current	Over temp.			500	nA
· los/• T	30-	12 POLICE AND TO A POLICE AND		200		pA/-C
BIAS				80	500	nA
	Input bias current	Over temp.		20100	1500	nA
• le/• T	. I ^{cv}	300 500	a. a	1		nA/+C
		R _t =10k•	+12	•14		ν
Vout	Output voltage swing	500 NA		200-0	l	200
(20)	0 8 8	R _L =2k• over temp	• 10	•13	l	ν
		R _L =2k+ , V _O =+10V	20	200		V/mV
A _{vo.}	Large-signal voltage gain				l	
		R_L =2k+ , V_O =+10V, over temp.	15		l	V/mV
	Offset voltage adjustment range			• 30		mV
PSRR	Supply voltage rejection ratio	R _S • 10k•		10	150	• V/V
CMRR	Common mode rejection ration	Š.	70	90		dB
V _{IN}	Input voltage range	Over temp.	• 12	+13	ŝ	ν
R _{IN}	Input resistance		0.3	20	8	M-
Pd	Power consumption	28		50	85	mW
Rout	Output resistance		80 2	75		
lsc	Output short-circuit current			25		mA

AC ELECTRICAL CHARACTERISTICS

 T_A =25•C, V_S = •15V, unless otherwise specified.

SYMBOL PARAMETER	TEST CONDITIONS	•A741, •A741C				
	TEST CONDITIONS	Min	Тур	Max	UNIT	
RIN	Parallel input resistance	Open-loop, f=20Hz	0.3			M•
CIN	Parallel input capacitance	Open-loop, f=20Hz		1.4	1	pF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V _{IN} =20mV, R _L =2k+ , C _L +100pF				
t _R	Rise time			0.3		• 5
	Overshoot			5.0		%
SR	Slew rate	C+100pF, RL+2k+ , V _{IN} =+10V		0.5		V/• s

OA741

General purpose operational amplifier

· A741/• A741C/SA741C

EQUIVALENT SCHEMATIC

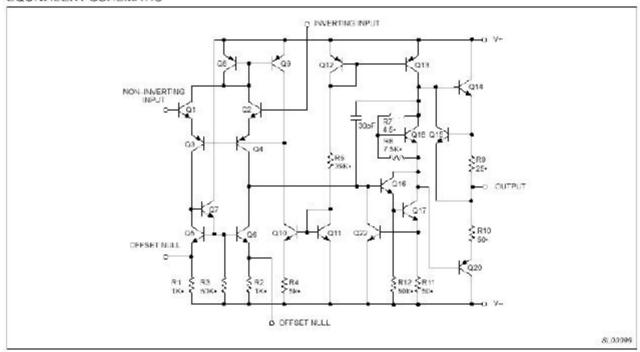


Figure 2. Equivalent Schematic

General purpose operational amplifier

A741/- A741C/SA741C

TYPICAL PERFORMANCE CHARACTERISTICS

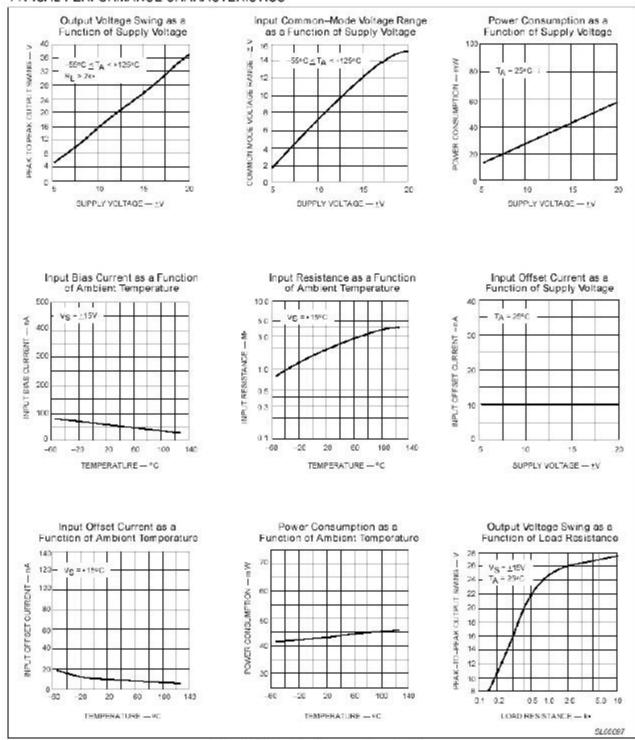


Figure 3 Typical Performance Characteristics

OA741

General purpose operational amplifier

A741/- A741C/SA741C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

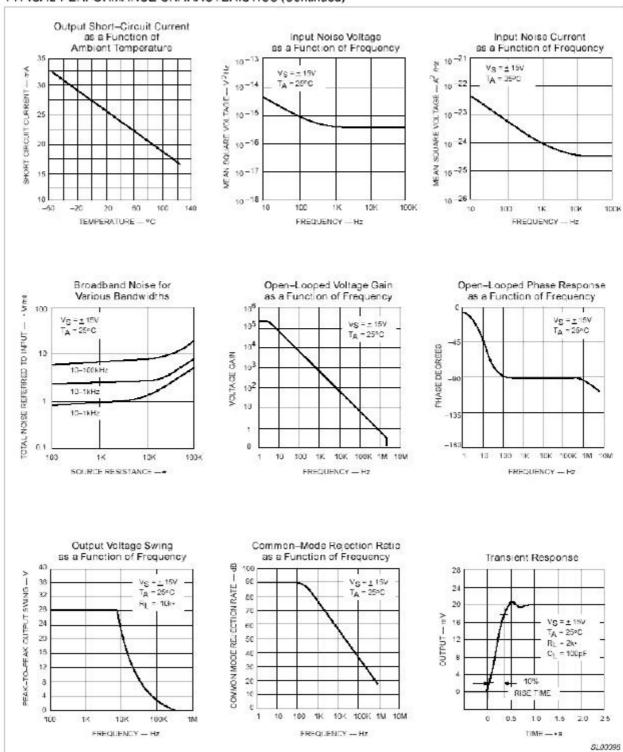


Figure 4. Typical Performance Characteristics (cont.)

OA741

August 1999

LM117/LM317A/LM317 3-Terminal Adjustable Regulator

General Description

The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1.5A over a 1.2V to 37V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.

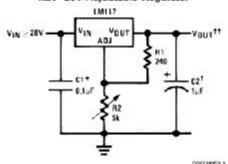
In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's, included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential volt-

age, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment pin and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2V where most loads draw little current.


For applications requiring greater output current, see LM150 series (3A) and LM138 series (5A) data sheets. For the negative complement, see LM137 series data sheet.

Features

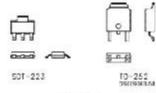
- Guaranteed 1% output voltage tolerance (LM317A)
- Guaranteed max. 0.01%/V line regulation (LM317A)
- Guaranteed max. 0.3% load regulation (LM117).
- Guaranteed 1.5A output current
- Adjustable output down to 1.2V
- Current limit constant with temperature
- P* Product Enhancement tested
- 80 dB ripple rejection
- Output is short-circuit protected

Typical Applications

1.2V-25V Adjustable Regulator

Full output current not available at high input-output voltages

*Needed if device is more than 6 inches from filter capacitors


Optional — improves transient response. Output capacitors in the range of 1 LF to 1000 µF of aluminum or taniquem electroyete are commonly used to provide improved output impedance and rejection of transients.

$$+ t V_{OUT} - 1.25 V \left(\tau + \frac{R2}{R1} \right) + I_{AOJ}(R_2)$$

LM117 Series Packages

Part Number Suffix	Package	Design Load Current
К	TO-3	1.5A
Н	TO-39	0.5A
1	TO-220	1.5A
E	LCC	0.5A
S	TO-263	1.5A
EMP	SOT-223	1A
MDT	TO-252	0.5A

SOT-223 vs D-Pak (TO-252) Packages

Scale 1:1

© 1999 National Semiconductor Corporation DS009063

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited Input-Output Voltage Differential +40V, -0.3V Storage Temperature -65°C to +150°C Lead Temperature

Metal Package (Soldering, 10 seconds) 300°C Plastic Package (Soldering, 4 seconds) 260°C ESD Tolerance (Note 5) 3 kV

Operating Temperature Range

 $\begin{array}{lll} \text{LM117} & -55 ^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +150 ^{\circ}\text{C} \\ \text{LM317A} & -40 ^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125 ^{\circ}\text{C} \\ \text{LM317} & 0 ^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125 ^{\circ}\text{C} \end{array}$

Preconditioning

Thermal Limit Burn-in All Devices 100%

Electrical Characteristics (Note 3)

Specifications with standard type face are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over **full Operating Temperature Range**. Unless otherwise specified, $V_{IN} = V_{OUT} = 5V$, and $I_{OUT} = 10$ mA.

Parameter	Conditions	l I	Units		
		Min	Тур	Max	
Reference Voltage			0.00		V
	$3V \leq \left(V_{1N} = V_{DUT}\right) \leq 40V,$	1.20	1.25	1.30	V
	10 mA $\leq I_{OUT} \leq I_{MAX}$, P $\leq P_{MAX}$				
Line Regulation	$3V \le (V_{IN} - V_{DUT}) \le 40V \text{ (Note 4)}$	9	0.01	0.02	%/V
0,000	4.000 m		0.02	0.05	%/V
Load Regulation	10 mA ≤ I _{CUT} ≤ I _{MAX} (Note 4)		0.1	0.3	%
			0.3	1	%
Thermal Regulation	20 ms Puise		0.03	0.07	96/V
Adjustment Pin Current			50	100	μA
Adjustment Pin Current Change	10 mA ≤ I _{CUT} ≤ I _{MAX}		0.2	5	μA
	$3V \le (V_{IN} - V_{OLIT}) \le 40V$	1	-9-000		000000
Temperature Stability	$T_{MIN} \le T_{\perp} \le T_{MAX}$		1	ć.	%
Minimum Load Current	$(V_{IN} - V_{OUT}) = 40V$		3.5	5	mA
Current Limit	$(V_{IN} - V_{OUT}) \le 15V$				
	K Package	1.5	2.2	3.4	A
	H Packages	0.5	0.8	1.8	А
	$(V_{IN} - V_{OUT}) = 40V$				
	K Package	0.3	0.4		Α
	H Package	0.15	0.2		А
RMS Output Noise, % of Vout	10 Hz ≤ f ≤ 10 kHz		0.003		%
Ripple Rejection Ratio	V _{OUT} = 10V, f = 120 Hz,		65		dB
	C _{ADJ} = 0 µF		7579480		10000
	V _{OUT} = 10V, f = 120 Hz.	66	80		dB
	C _{ADJ} = 10 µF		10-400-0-		
Long-Term Stability	T _J = 125°C, 1000 hrs		0.3	1	%
Thermal Resistance,	K Package		2.3	3	-C/V
Junction-to-Case	H Package		12	15	.CV
	E Package			20/590	°C/V
Thermal Resistance, Junction-	K Package		35		-C/V
no-Ambient (No Heat Sink)	H Package		140		°C/V
MC1494Ch4.148.148.148.148.148.1597Ch474.149.1	E Package		0.80000		°C/V

Application Hints

In operation, the LM117 develops a nominal 1.25V reference voltage, $V_{\rm REF}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_1 then flows through the output set resistor R2, giving an output voltage of

$$V_{OUT} = V_{REF} \left(1 + \frac{R2}{R1} \right) + I_{ADJ}R2$$

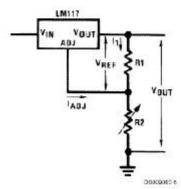


FIGURE 1.

Since the 100 µA current from the adjustment terminal represents an error term, the LM117 was designed to minimize I_{ADJ} and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A 0.1 µF disc or 1 µF solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.

The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a 10 μF bypass capacitor $\delta 0$ dB ripple rejection is obtainable at any output level. Increases over $10~\mu F$ do not appreciably improve the ripple rejection at frequencies above 120 Hz. If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about 25 µF in aluminum electrolytic to equal 1 µF solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz. For this reason, 0.01 µF disc may seem to work better than a 0.1 µF disc as a bypass.

Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF. A 1 µF solid tantaium (or 25 µF

aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of the load capacitance larger than 10 µF will merely improve the loop stability and output impedance.

Load Regulation

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resister connected between the adjustment terminal and the output terminal (usually 240 Ω) should be tied directly to the output (case) of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15V regulator with 0.05 Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_{\rm L}$. If the set resistor is connected near the load the effective line resistance will be 0.05Ω (1 + R2/R1) or in this case, 11.5 times worse.

Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

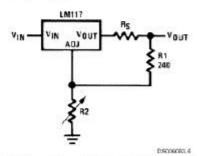
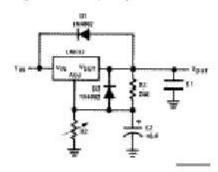


FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-39 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes


When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most 10 µF capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.

When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of $V_{\rm IN}$. In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of 25 μF or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25V or

Application Hints (Continued)

less and 10 µF capacitance. Figure 3 shows an UM117 with protection diodes included for use with outputs greater than 25V and high values of output capacitance.

$$V_{QQQ} = 1.29V \left(1 + \frac{R_2}{R_1}\right) + I_{QQQ}R_2^2$$

D1 protects against 01 D2 protects against 02

FIGURE 3. Regulator with Protection Diodes.

When a value for $\theta_{(H-N)}$ is found using the equation shown, a heatshit must be selected that has a value that is less than or equal to this number.

 θ_{g+Ag} is specified runnerloady by the heatsink manufacturer in the cetalog or shown in a curve that plots temperature rise we gower dissipation for the heatsink.

HEATSINKING TO-263, SDT-223 AND TO-252 PACKAGE PARTS

The TO-263 ("S"), SOT-228 ("MP") and TO-252 ("DT") packages use a copper plane on the PCB and the PCB stell as a heatslink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the package to the plane.

Figure 4 shows for the TO-263 the measured values of ti_{G-N} for different copper area sizes using a typical PCB with 1 sunce copper and no solder mask over the copper area used for heatstaking.

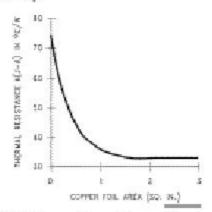


FIGURE 4. $\theta_{(J-h)}$ vs Copper (1 ounce) Area for the TO-263 Package

As shown in the figure, increasing the copper area beyond it square inch produces very little improvement, it should also be observed that the minimum value of H_{cJ-Ab} for the TO-263 package mounted to a PCS is 32°C/W.

As a design aid, Figure 5 shows the maximum allowable power dissipation compared to ambient temperature for the TO-263 device (assuming 6_{0.000} is 35°G/W and the maximum junction temperature is 125°G).

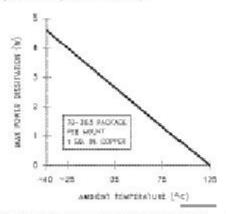


FIGURE 5. Maximum Power Dissipation vs T_{AND} for the TO-263 Package

Figure 6 and Figure 7 show the information for the SOT-223 package. Figure 7 assumes a $\theta_{(J-A)}$ of 74°C/W for 1 curve copper and 51°C/W for 2 curve copper and a maximum junction temperature of 125°C.

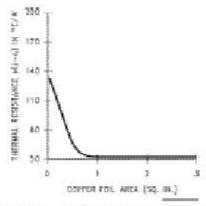


FIGURE 6. $\theta_{(J-A)}$ vs Copper (2 ounce) Area for the SOT-223 Package

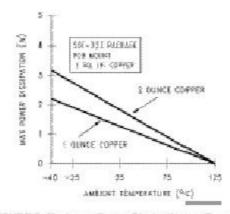


FiGURE 7. Maximum Power Dissipation vs T_{AMB} for the SOT-223 Package

National Semiconductor

May 1999

LM137/LM337

3-Terminal Adjustable Negative Regulators

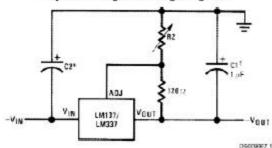
General Description

The LM137/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of =1.5A over an output voltage range of =1.2V to =37V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137/LM337 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137/LM337 are ideal complements to the LM117/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2V to -37V
- 1.5A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.3%
- Excellent thermal regulation, 0.002%/W


- 77 dB ripple rejection
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P* Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

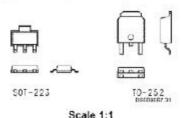
LM137 Series Packages and Power Capability

Device	Package	Rated Power Dissipation	Design Load Current
LM137/337	TO-3 (K)	20W	1.5A
	TO-39 (H)	2W	0.5A
LM337	TO-220 (T)	15W	1.5A
LM337	SOT-223 (MP)	2W	1A

Typical Applications

Adjustable Negative Voltage Regulator

Full cutput current not evallable at high input output voltages


$$-V_{OUT} = -1.25V \left(1 + \frac{R2}{120}\right) + \left(-I_{ADJ} \times R2\right)$$

 $\pm C1 = 1~\mu F$ solid tantalum or 10 μF aluminum electrolytic required for stability

"G2 = 1 µ= solid tantalum is required only if regulator is more than 4" from power-supply filter capacitor."

Output capacitions in the range of 1 µF to 1000 µF of autminute or tantalum sectrolytic are commonly used to provide improved output impedance and rejection of transients.

Comparison between SOT-223 and D-Pak (TO-252) Packages

LM137/337

Absolute Maximum Ratings (Notes 1, 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation Internally Limited Input-Output Voltage Differential 40V

Operating Junction Temperature Range

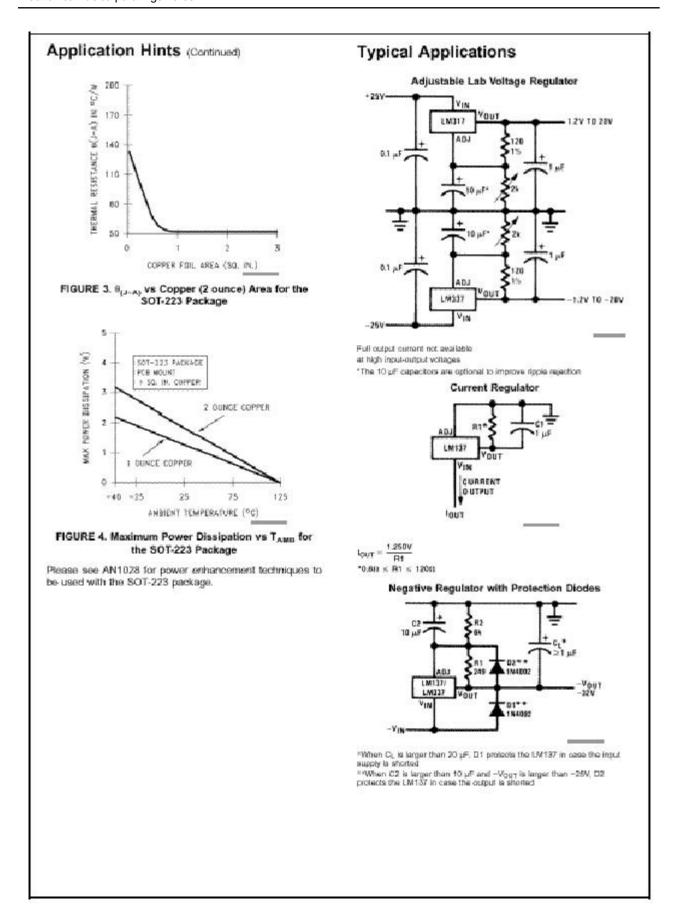
LM137 -55°C to +150°C

LM337 0°C to +125°C
Storage Temperature (Soldering, 10 sec.)
Plastic Package (Soldering, 4 sec.)
ESD Rating 2k Volts

Electrical Characteristics

(Note 1)

Parameter	Conditions		LM137			LM337		Units
		Min	Тур	Max	Min	Тур	Max	
Line Regulation	$T_j = 25^{\circ}C$, $3V \le V_{IN} - V_{OUT} \le 40V$ (Note 2) $I_L = 10 \text{ mA}$		0.01	0.02		0.01	0.04	%/V
Load Regulation	$T_j = 25^{\circ}C$, 10 mA $\leq I_{OUT} \leq I_{MAX}$		0.3	0.5		0.3	1.0	%
Thermal Regulation	T _i = 25°C, 10 ms Pulse		0.002	0.02		0.003	0.04	%/W
Adjustment Pin Current			65	100		65	100	μA
Adjustment Pin Current Charge	$10 \text{ mA} \le I_L \le I_{\text{MAX}}$ $3.0 \text{V} \le V_{\text{IN}} - V_{\text{OUT}} \le 40 \text{V}$, $T_A = 25^{\circ}\text{C}$		2	5		2	5	μА
Reference Voltage	$T_j = 25^{\circ}C \text{ (Note 3)}$ $3V \le V_{IN} - V_{OUT} \le 40V. \text{ (Note 3)}$ $10 \text{ mA} \le I_{OUT} \le I_{MAX}, P \le P_{MAX}$	-1.225 -1.200	-1.250 -1.250	100000000000000000000000000000000000000	-1.213 -1.200	-1.250 -1.250	TOTAL NEW YORK	V
Line Regulation	3V ≤ [V _{IN} = V _{OUT}] ≤ 40V, (Note 2)		0.02	0.05		0.02	0.07	%N
Load Regulation	10 mA ≤ l _{OUT} ≤ l _{MAX} . (Note 2)		0.3	1		0.3	1.5	%
Temperature Stability	$T_{MIN} \le T_i \le T_{MAX}$		0.6			0.6		%
Minimum Load Current	V _N = V _{OUT} ≤ 40V		2.5	5		2.5	10	mA
	[V _{IN} - V _{OUT}] ≤ 10V		1.2	3		1.5	6	mA
Current Limit	V _N - V _{OUT} < 15V							
	K, MP and T Package	1.5	2.2	3.5	1.5	2.2	3.7	Α
	H Package V _N - V _{OUT} = 40V, T _j = 25°C	0.5	0.8	1.8	0.5	0.8	1.9	А
	K, MP and ⊤ Package	0.24	0.4		0.15	0.4		Α
	H Package	0.15	0.17		0.10	0.17		A
RMS Output Noise, % of V _{CUT}	$T_i = 25^{\circ}C$, 10 Hz $\leq f \leq$ 10 kHz		0.003			0.003		%
Ripple Rejection Ratio	V _{OUT} = -10V, f = 120 Hz		60			60		dB
	C _{ADJ} = 10 µF	66	77		66	77		dB
Long-Term Stability	T _j = 125°C, 1000 Hours		0.3	1		0.3	1	%
Thermal Resistance, Junction to	H Package		12	15		12	15	'C/W
Case	K Package		2.3	3		2.3	3	:C/W
	T Package					4		.C/M
Thermal Resistance, Junction to	H Package		140			140		,CVM
Ambient (No Heat Sink)	K Package		35			35		.C\M
	T Package					50		'C/W
	MP Package					170		.C\M


Note 1: Unless otherwise specified, these specifications apply =55.0 < T₁ s +150.0 for the LM137, 0.0 s T₁ s +125°C for the LM337, V_{IN} = V_{OUT} = 5V; and lour = 0.1A for the TO.39 package and I_{OUT} = 0.5A for the TO.39, SOT-223 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2W for the TO-39 and SOT-223 (see Application Hints), and 20W for the TO-3, and TO-220, I_{M5X} is 1.5A for the TO-3, SOT-223 and TO-220 packages, and 0.2A for the TO-39 package.

Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point 16" below the base of the TO-3 and TO-39 packages.

Note 3: Selected devices with hightened tolerance reference voltage available

Note 4: Refer to RETS137H drawing for LM137H or RETS137K drawing for LM137K military specifications

LM137/337

LM137/337

MKP3V120, MKP3V240

Preferred Device

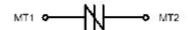
Sidac High Voltage

Bidirectional Triggers

Bidirectional devices designed for direct interface with the ac power line. Upon reaching the breakover voltage in each direction, the device switches from a blocking state to a low voltage on–state. Conduction will continue like a Triac until the main terminal current drops below the holding current. The plastic axial lead package provides high pulse current capability at low cost. Glass passivation insures reliable operation. Applications are:

- · High Pressure Sodium Vapor Lighting
- · Strobes and Flashers
- · Ignitors
- · High Voltage Regulators
- Pulse Generators
- · Used to Trigger Gates of SCR's and Triacs
- Na Indicates UL Registered File #E116110
- Device Marking: Logo, Device Type, e.g., MKP3V120, Date Code

MAXIMUM RATINGS (Tj = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Sine Wave, 50 to 60 Hz, T _J = -40 to 125°C) MKP3V120 MKP3V240	VDRM- VRRM	±90 ±180	Volts
On-State RMS Current (T _L = 80°C, Lead Length = 3/8", All Conduction Angles)	IT(RMS)	±1.0	Amp
Peak Non-Repetitive Surge Current (60 Hz One Cycle Sine Wave, Peak Value, T _J = 125°C)	ITSM	±20	Amps
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	⊤stg	-40 to +150	-c

ON Semiconductor

http://onsemi.com

SIDACS (%)
1 AMPERE RMS
120 and 240 VOLTS

ORDERING INFORMATION

Device	Package	Shipping
MKP3V120	SURMETIC 50	Bulk 500/Bag
MKP3V120RL	SURMETIC 50	Tape and Reel 1.5K/Reel
MKP3V240	SURMETIC 50	Bulk 500/Bag
MKP3V240RL	SURMETIC 50	Tape and Reel 1.5K/Reel

Preferred devices are recommended choices for future use and best overall value.

MKP3V129/240

MKP3V120, MKP3V240

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Lead (Lead Length = 3/8")	R _{B,JL}	15	°C/W
Lead Solder Temperature (Lead Length ≥ 1/16" from Case, 10 s Max)	τL	260	*0

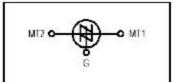
$\textbf{ELECTRICAL CHARACTERISTICS} \ (\texttt{T}_{C} = 25^{\circ}\texttt{C} \ unless \ otherwise \ noted; \ \textbf{Electricals apply in both directions})$

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						•
Repetitive Peak Off–State Current (50 to 60 Hz Sine Wave) VDRM = 90 V VDRM = 180 V	MKP3V120 MKP3V240	IDRM	-		10	μА
N CHARACTERISTICS	,		200 10	: :		77
Breakover Voltage, I _{BO} = 200 μA	MKP3V120 MKP3V240	V _{BO}	110 220	_	130 250	Volts
Breakover Current		IBO	-		200	μА
Peak On–State Voltage (I _{TM} = 1 A Peak, Pulse Width ≤ 300 μs, Duty	Cycle ≤ 2%)	V™		1.1	1.5	Volts
Dynamic Holding Current (Sine Wave, 60 Hz, R _L = 100 Ω)		1H	-		100	mA
Switching Resistance (Sine Wave, 50 to 60 Hz)		RS	0.1		-	kΩ
YNAMIC CHARACTERISTICS		8	80. 0		9	€:
Critical Rate-of-Rise of On-State Current, Critical Damped Waveform Circuit (IPK = 130 Amps, Pulse Width = 10 µsec)		di/dt		120	-	A/μs

MKP3V129/240

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Order this document by MBS4991/D


Silicon Bidirectional Switches Diode Thyristors

... designed for full-wave triggering in Triac phase control circuits, half-wave SCR triggering application and as voltage level detectors. Supplied in an inexpensive plastic TO-226AA package for high-volume requirements, this low-cost plastic package is readily adaptable for use in automatic insertion equipment.

- · Low Switching Voltage 8 Volts Typical
- · Uniform Characteristics in Each Direction
- Low On-State Voltage 1.7 Volts Maximum
- Low Off-State Current 0.1 μA Maximum
- Low Temperature Coefficient 0.02 %/°C Typical

MBS4991 MBS4992 MBS4993

> SBS (PLASTIC)

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Dissipation	PD	500	mW
DC Forward Current	l _F	200	mA
DC Gate Current (Off-State Only)	I _G (off)	5	mA
Repetitive Peak Forward Current (1% Duty Cycle, 10 µs Pulse Width, T _A = 100°C)	lEW(teb)	2	Amps
Non-repetitive Forward Current (10 µs Pulse Width, T _A = 25°C)	I _{FM} (nonrep)	6	Amps
Operating Junction Temperature Range	TJ	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MBS4991/2/3

MB\$4991 MB\$4992 MB\$4993

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Switching Voltage	MBS4991 MBS4992, MBS4993	٧s	6 7.5	8 8	10 9	Vdc
Switching Current	MBS4991 MBS4992 MBS4993	¹s	-	175 90 175	500 120 250	μAdc
Switching Voltage Differential (See Figure 10)	MBS4991 MBS4992, MBS4993	V _{S1} -V _{S2}	_	0.3 0.1	0.5 0.2	Vdc
Gate Trigger Current (V _F = 5 Vds, R _L = 1 k ohm)	MBS4992 MBS4993	^I GF	_	_	100 500	μAdc
Holding Current	MBS4991 MBS4992 MBS4993	!H	=	0.7 0.2 0.3	1.5 0.5 0.75	mAdo
Off-State Blocking Current (VF = 5 Vdc, TA = 25°C) (VF = 5 Vdc, TA = 85°C) (VF = 5 Vdc, TA = 25°C) (VF = 5 Vdc, TA = 100°C)	MBS4991 MBS4991 MBS4992, MBS4993 MBS4992, MBS4993	lg	=	0.08 2 0.08 6	1 10 0.1 10	μAdc
Forward On-State Voltage (IF = 175 mAdc) (IF = 200 mAdc)	MBS4991 MBS4992, MBS4993	VF	_	1.4 1.5	1.7 1.7	Vdc
Peak Output Voltage ($C_C = 0.1 \mu\text{F}, R_L = 20 \text{chms}$, (Figure 7)	Vo	3.5	4.8		Vdc
Turn-On Time (Figure 8)		ton	-	3	227	μs
Turn-Off Time (Figure 9)		toff		30	-	μs
Temperature Coefficient of Switching Voltage (-5	0 to +125°C)	™C	-	+0.02	220	%/°C
Switching Current Differential (See Figure 10)		Ist-Is2	_		100	μА

MBS4991/2/3

2N5060 Series

Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Annular PNPN devices designed for high volume consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-226AA (TO-92) package which is readily adaptable for use in automatic insertion equipment.

- Sensitive Gate Trigger Current 200 µA Maximum
- Low Reverse and Forward Blocking Current 50 μA Maximum, T_C = 110°C
- Low Holding Current 5 mA Maximum
- · Passivated Surface for Reliability and Uniformity
- · Device Marking: Device Type, e.g., 2N5060, Date Code

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage ⁽¹⁾ (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) 2N5060 2N5061 2N5062 2N5064	VDRM, VRRM	30 60 100 200	Volts
On-State Current RMS (180° Conduction Angles; T _C = 80°C)	^I T(RMS)	0.8	Amp
*Average On-State Current (180° Conduction Angles) (T _C = 67°C) (T _C = 102°C)	IT(AV)	0.51 0.255	Amp
*Peak Non-repetitive Surge Current, T _A = 25°C (1/2 cycle, Sine Wave, 60 Hz)	ITSM	10	Amps
Circuit Fusing Considerations (t = 8.3 ms)	12t	0.4	A ² s
*Forward Peak Gate Power (Pulse Width ≤ 1.0 μsec; T _A = 25°C)	PGM	0.1	Watt
*Forward Average Gate Power (T _A = 25°C, t = 8.3 ms)	P _G (AV)	0.01	Watt
*Forward Peak Gate Current (Pulse Width ≤ 1.0 μsec; T _A = 25°C)	IGМ	1.0	Amp
*Reverse Peak Gate Voltage (Pulse Width ≤ 1.0 µsec; T _A = 25°C)	VRGM	5.0	Volts
*Operating Junction Temperature Range	ТЈ	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C

^{*}Indicates JEDEC Registered Data:

ON Semiconductor

http://onsemi.com

SCRs 0.8 AMPERES RMS 30 thru 200 VOLTS

TO-92 (TO-226AA) CASE 029 STYLE 10

PI	N ASSIGNMENT
1	Cathode
2	Gate
3	Anode

ORDERING INFORMATION

See datailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2N5060 Series

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction to Case ⁽¹⁾	Rejc	75	°C/W
Thermal Resistance, Junction to Ambient	R ₀ JA	200	°C/W
Lead Solder Temperature (Lead Length > 1/16" from case, 10 s Max)		+230	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	181	3			5
*Peak Repetitive Forward or Reverse Blocking Current(2) $(V_{AK} = Rated V_{DRM} or V_{RRM})$ $T_{C} = 25^{\circ}C$ $T_{C} = 110^{\circ}C$	IDRM-IRRM	_	-	10 50	μΑ μΑ
ON CHARACTERISTICS	<u> </u>	20	***		
*Feak Forward On–State Voltage(3) (ITM = 1.2 A peak @ TA = 25°C)	VTM	=	-	1.7	Volts
Gate Trigger Current (Continuous dc)(4) * $(V_{AK} = 7 \text{ Vdc}, R_L = 100 \text{ Ohms})$ $T_C = 25^{\circ}\text{C}$ $T_C = -40^{\circ}\text{C}$	lgT	_	=	200 350	μΑ
$ \begin{array}{ll} \mbox{Gate Trigger Voltage (Continuous dc)(4)} & T_{\rm C} = 25^{\circ}{\rm C} \\ \mbox{$^{\circ}$(V_{AK} = 7 \mbox{ Vdc, R}_{\rm L} = 100 \mbox{ Ohms})$} & T_{\rm C} = -40^{\circ}{\rm C} \\ \end{array} $	VGT	_	=	0.8 1.2	Volts
*Gate Non-Trigger Voltage (VAK = Rated VDRM, RL = 100 Ohms) T _C = 110°C	VGD	0.1	_		Volts
Holding Current(4) $T_C = 25^{\circ}C$ $^{\dagger}(V_{AK} = 7 \text{ Vdc, initiating current} = 20 \text{ mA})$ $T_C = -40^{\circ}C$	I _H	=	_	5.0 10	mA
Turn-On Time Delay Time Rise Time (IGT = 1 mA, VD = Rated VDRM- Forward Current = 1 A, di/dt = 6 A/µs	ta tr	3.5	3.0 0.2	-	μѕ
Turn-Off Time (Forward Current = 1 A pulse, Pulse Width = 50 μs, 0.1% Duty Cycle, di/dt = 6 A/μs, dv/dt = 20 V/μs, I _{GT} = 1 mA) 2N5060, 2N5061 2N5062, 2N5064	^t q		10 30		μs
YNAMIC CHARACTERISTICS	380	38	34	3	9
Critical Rate of Rise of Off–State Voltage (Rated V _{DRM} , Exponential)	dv/dt	-	30		V/µs

^{*}Indicates JEDEC Registered Data.

⁽¹⁾ This measurement is made with the case mounted "flat side down" on a heat sink and held in position by means of a metal clamp over the curved surface.

⁽²⁾ R_{GK} = 1000 Ω is included in measurement. (3) Forward current applied for 1 ms maximum duration, duty cycle **4** 1%.

⁽⁴⁾ RGK current is not included in measurement.

2N5060

2N6027, 2N6028

Preferred Device

Programmable Unijunction Transistor

Programmable Unijunction Transistor Triggers

Designed to enable the engineer to "program" unijunction characteristics such as RBB, η , IV, and Ip by merely selecting two resistor values. Application includes thyristor–trigger, oscillator, pulse and timing circuits. These devices may also be used in special thyristor applications due to the availability of an anode gate. Supplied in an inexpensive TO–92 plastic package for high–volume requirements, this package is readily adaptable for use in automatic insertion equipment.

- Programmable RBB, η, IV and IP
- Low On–State Voltage 1.5 Volts Maximum @ I_F = 50 mA
- Low Gate to Anode Leakage Current 10 nA Maximum
- High Peak Output Voltage 11 Volts Typical
- Low Offset Voltage 0.35 Volt Typical (R_G = 10 k ohms)
- · Device Marking: Logo, Device Type, e.g., 2N6027, Date Code

MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
*Power Dissipation Derate Above 25°C	PF 1/0JA	300 4.0	mW/°C
*DC Forward Anode Current Derate Above 25°C	İΤ	150 2.67	mA mA^°C
*DC Gate Current	lG	± 50	mA
Repetitive Peak Forward Current 100 µs Pulse Width, 1% Duty Cycle *20 µs Pulse Width, 1% Duty Cycle	JTRM	1.0 2.0	Amps
Non-Repetitive Peak Forward Current 10 µs Pulse Width	ITSM	5.0	Amps
*Gate to Cathode Forward Voltage	VGKF	40	Volts
*Gate to Cathode Reverse Voltage	VGKR	-5.0	Volts
*Gate to Anode Reverse Voltage	VGAR	40	Volts
*Anode to Cathode Voltage(1)	VAK	±40	Volts
Operating Junction Temperature Range	Tj	-50 to +100	°C
*Storage Temperature Range	T _{stg}	-55 to +150	°C

^{*}Indicates JEDEC Registered Data

ON Semiconductor

http://onsemi.com

PUTs 40 VOLTS 300 mW

TO-92 (TO-226AA) CASE 029 STYLE 16

PI	ASSIGNMENT	
1	Anode	
2	Gate	
3	Cathode	

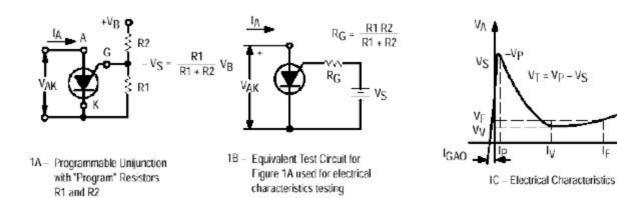
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

Anode positive, R_{GA} = 1000 ohms Anode negative, R_{GA} = open

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	Rajc	76	°C/W
Thermal Resistance, Junction to Ambient	R _{BJA}	200	"C/W
Maximum Lead Temperature for Soldering Purposes (<1/16" from case, 10 secs max)	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic		Fig. No.	Symbol	Min	Тур	Max	Unit
*Peak Current (Vg = 10 Vdc, R _G = 1 MΩ) (Vg = 10 Vdc, R _G = 10 k ohms)	2N6027 2N6028 2N6027 2N6028	2,9,11	ĺρ		1.25 0.08 4.0 0.70	2.0 0.15 5.0 1.0	μА
*Offset Voltage (VS = 10 Vdc, RG = 1 M Ω) (VS = 10 Vdc, RG = 10 k ohms)	2N6027 2N6028 (Both Types)	1	VT	0.2 0.2 0.2	0.70 0.50 0.35	1.6 0.6 0.6	Volts
* Valley Current $(V_S = 10 \text{ Vdc}, R_G = 1 \text{ M}\Omega)$ $(V_S = 10 \text{ Vdc}, R_G = 10 \text{ k ohms})$ $(V_S = 10 \text{ Vdc}, R_G = 200 \text{ ohms})$	2N6027 2N6028 2N6027 2N6028 2N6027 2N6028	1,4,5	ly	70 25 1.5 1.0	18 18 150 150 —	50 25 — — —	μA mA
*Gale to Anode Leakage Current (V _S = 40 Vdc, T _A = 25°C, Cathode Open) (V _S = 40 Vdc, T _A = 75°C, Cathode Open)		-	^I GAO	Ξ	1.0 3.0	10	nAdc
Gate to Cathode Leakage Current (V _S = 40 Vdc, Anode to Cathode Shorted)		-	GKS		5.0	50	nAdc
*Forward Voltage (I _F = 50 mA Peak)(1)		1,6	٧F	-	0.8	1.5	Volts
*Peak Output Voltage (V _G = 20 Vdc, C _C = 0.2 μF)		3,7	Vo	6.0	11	-	Volt
Pulse Voltage Rise Time $(V_B = 20 \text{ Vdc}, C_C = 0.2 \mu\text{F})$		3	t _r	201	40	80	ns

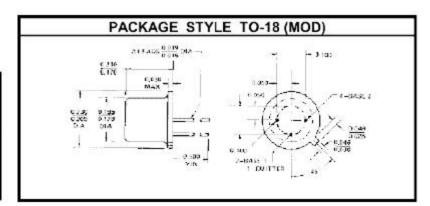
^{*}Indicates JEDEC Registered Data

⁽¹⁾ Pulse Test: Pulse Width \leq 300 µsec, Duty Cycle \leq 2%.

(also see Figure 2)

2N6027/28

2N2646


SILICON PN UNIJUNCTION TRANSISTOR

DESCRIPTION:

The **2N2646** is a Unijunction Transistor Used in General Purpose Pulse, Timing, Sense and Trigger Applications.

MAXIMUM RATINGS

Ic	2.0 A (PULSED)
V _{CE}	30 V
PDISS	$300 \text{ mW } @ \text{T}_{\text{G}} = 25 ^{\circ}\text{C}$
T,	-65 °C to +125 °C
T _{STG}	-65 °C to +150 °C
θ _{JC}	33 °C/W

CHARACTERISTICS Te = 25 °C

SYMBOL	TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	UNITS
η	V _{B2B1} = 10 V	0.56		0.75	-
r _{BB}	V _{B2B1} = 3.0 V	4.7	20	9.1	ΚΩ
α ₋₈₈	$V_{B2B1} = 3.0 \text{ V}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$	0.1	To an artist of the second of	0.9	%°C
V _{EB1(SAT)}	V _{B2B1} = 10 V I _E = 50 mA		3.0		٧
I _{B2(MOD)}	V _{B2B1} = 10 V I _E = 50 mA		20		mA
I _{B2EO}	V _{ROE} = 30 V I _{R1} = 0		8	12	μА
l _p	V _{B2B1} = 25 V		()	5.0	μА
l _v	$V_{B2B1} = 20 \text{ V}$ $R_{B2} = 100 \Omega$	4.0	98		mA
V _{OB1}	V _{B2B1} = 20 V R _{B1} = 20 Ω	3.0	5.0		V

ADVANCED SEMICONDUCTOR, INC.

REV. A

7525 ETHEL AVENUE • NORTH HOLLYWOOD, CA 91605 • (818) 982-1202 • TELEX: 18-2651 • FAX (818) 765-3004

1/1

2N2646

MAC218A6FP, MAC218A10FP

Preferred Device

Triacs

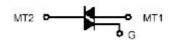
Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications, such as light dimmers, motor controls, heating controls and power supplies.

- · Blocking Voltage to 800 Volts
- Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Isolated TO-220 Type Package for Ease of Mounting
- · Gate Triggering Guaranteed in Four Modes
- Na Indicates UL Registered File #E69369
- Device Marking: Logo, Device Type, e.g., MAC218A6FP, Date Code

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to +125°C, Sine Wave 50 to 60 Hz, Gate Open) MAC218A6FP	VDRM, VRRM	400	Volts	
MAC218A10FP	3 9	800		
On-State RMS Current (T _C = +80°C) ⁽²⁾ Full Cycle Sine Wave 50 to 60 Hz	^I T(RMS)	8.0	Amps	
Peak Non-Repetitive Surge Current (One Full Cycle, 60 Hz, T _C = +80°C) Preceded and followed by rated current	ITSM	100	Amps	
Circuit Fusing Considerations (t = 8.3 ms)	1 ² t	40	A ² s	
Peak Gate Power (T _C = +80°C, Pulse Width = 10 µs)	PGM	16	Watts	
Average Gate Power (TC = +80°C, t = 8.3 ms)	PG(AV)	0.35	Watt	
Peak Gate Current (T _C = +80 °C, Pulse Width = 10 µs)	IGM	4.0	Amps	
RMS Isolation Voltage (T _A = 25°C, Relative Humidity ≤ 20%) (%)	V _(ISO)	1500	Volts	
Operating Junction Temperature	TJ	-40 to +125	°C	
Storage Temperature Range	T _{stg}	-40 to +150	°C	


⁽¹⁾ VDRM and VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor

http://onsemi.com

ISOLATED TRIAC (%) 8 AMPERES RMS 400 thru 800 VOLTS

ISOLATED TO-220 Full Pack CASE 221C STYLE 3

P	IN ASSIGNMENT
1	Main Terminal 1
2	Main Terminal 2
3	Gate

ORDERING INFORMATION

Device	Package	Shipping		
MAC218A6FP	ISOLATED TO220FP	500/Box		
MAC218A10FP	ISOLATED TO220FP	500/Box		

Preferred devices are recommended choices for future use and best overall value.

MAC218A

⁽²⁾ The case temperature reference point for all T_C measurements is a point on the center lead of the package as close as possible to the plastic body.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{BJC}	2.2	°C/W
Thermal Resistance, Case to Sink	Recs	2.2 (typ)	°C/W
Thermal Resistance, Junction to Ambient	Reja	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ŦL.	260	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{T}_{C} = 25^{\circ} \textbf{C} \ \text{unless otherwise nated; Electricals apply in both directions})$

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
Peak Repetitive Blocking Current $(V_D = Rated \ V_{DRM}, \ V_{RRM}; \ Gate \ Open)$ $T_J = 25^{\circ}$ $T_J = 125^{\circ}$ C	DRM- IRRM	_	100	.10 2.0	μA mA
ON CHARACTERISTICS		•	•	•	
Peak On-State Voltage(1) (I _{TM} = ± 11.3 A Peak)	V _{TM}	SS	1.7	2.0	Volts
Gate Trigger Current (Continuous dc) (V _D = 12 Vdc, R _L = 100 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	^I GT		-	50 50 50 75	mΑ
Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 Vdc, R _L = 100 Ohms) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+)	VGT	=	0.9 0.9 1.1 1.4	2.0 2.0 2.0 2.5	Volts
Gate Non–Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 V, R_L = 100 Ω , T_J = +125°C) All Four Quadrants	^V GD	0.2	0.700	-	Volts
Holding Current (V _D = 12 Vdc, Gate Open, Initiating Current = ±200 mA)	lн		_	50	mA
DYNAMIC CHARACTERISTICS					
Critical Rate of Rise of Commutating Off–State Voltage (V _D = Rated V _{DRM} , I _{TM} = 11.3 A, Commutating dt/dt = 4.1 A/ms, Gate Unenergized, T _C = 80°C)	dv/dt(c)	_	5.0	_	V/μs
Critical Rate of Rise of Off–State Voltage (V _D = Rated V _{DRM} , Exponential Voltage Rise, Gate Open, T _J = 125°C)	dv/dt	7. == 7.	100	10000	V/µs

⁽¹⁾ Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle $\leq 2\%$.

MAC218A